INTERNATIONAL STANDARD

ISO 4504

First edition 2023-06

Plastics — Polyethylene (PE) — Determination of co-monomer content by solution state ¹³C-NMR spectrometry

Plastiques — polyéthylène (PE) — Détermination de la teneur en comonomères par spectroscopie RMN du carbone 13

(standards ital si)

ISO 4504:2023

https://standards.iteh.ai/catalog/standards/sist/f0c00635-a429-4a85-aef4-589054eac8c3/iso-4504-2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4504:2023 https://standards.iteh.ai/catalog/standards/sist/f0c00635-a429-4a85-aef4-589054eac8c3/iso 4504-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents			
Fore	eword	iv	
1	Scope	1	
2	Normative references	1	
3	Terms, definitions, symbols and abbreviated terms 3.1 Terms and definitions 3.2 Symbols 3.3 Abbreviated terms	1 2	
4	Principle	2	
5	Reagents and materials	2	
6	Apparatus	3	
7	Preparation and preservation of test samples	3	
8	Method A — Inverse gated decoupling method 8.1 Sample preparation 8.2 Procedure 8.3 Calculation	3 4	
9	Method B — Insensitive nuclei enhanced by polarization transfer method 9.1 Sample preparation 9.2 Procedure 9.3 Calculation	5 5 6	
10	Expression of results standards iteh ai	6	
11	Precision		
12	Test report ISO 4504:2023		
Anno	ex A (normative) Spectral integration method and integration limits outlines	8	
Anno	ex B (normative) Summary of formulae	10	
	ex C (informative) Calculation example of method A		
	ex D (informative) Calculation example of method B		
Anno	ex E (informative) Reference longitudinal relaxation time(T ₁) values	16	
Anno	ex F (informative) Chemical shift region of branch CH-carbon of different co-mono	mers 19	
	ex G (informative) Summary of precision data		
	ex H (informative) Introduction to pulse program		
Anno	ex I (informative) Consistency validation between method A and method B	24	
Bibli	iography	25	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 9, *Thermoplastic materials*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete

Plastics — Polyethylene (PE) — Determination of comonomer content by solution state ¹³C-NMR spectrometry

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the user's responsibility to establish appropriate safety and health practices.

1 Scope

This document specifies two methods for the determination of co-monomer contents of polyethylene products by solution state ¹³C-NMR spectrometry (nuclear magnetic resonance spectrometry):

- method A: inverse gated decoupling method.
- method B: insensitive nuclei enhanced by polarization transfer method;

This document is applicable to copolymers of ethylene having a content of other 1-olefinic monomers of less than a mass fraction of 50 %.

This document is not applicable to ethylene homopolymers or copolymers in which ethylene is polymerized with two or more type 1-olefin comonomers.

2 Normative references (and ards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

ISO 648, Laboratory glassware — Single-volume pipettes

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1.1

insensitive nuclei enhanced by polarization transfer

¹³C NMR method in which magnetisation is transferred from sensitive nuclei to directly linked insensitive nuclei enhanced by polarisation transfer

Note 1 to entry: See Reference [4].

3.1.2

refocused INEPT

INEPT pulse program with a pair of refocus delay and π inversion pulse in both sensitive and insensitive nuclei resonance channels

3.2 Symbols

 T_1 Longitudinal relaxation time

 $T_{1, \text{max}}$ longest T_1 of atom nuclei

13C Carbon 13

¹H Hydrogen 1

 $T_{\rm p}$ polarization transfer time

 $T_{\rm R}$ refocusing time

3.3 Abbreviated terms

NMR nuclear magnetic resonance

13C-NMR carbon 13 nuclear magnetic resonance

PFT-NMR pulse Fourier transform nuclear magnetic resonance spectrometer

LOQ limit of quantitation

LOD limit of detection

SNR https://signal-to-noise ratio/alog/standards/sist/f0c00635-a429-4a85-aef4-589054eac8c3/iso-

4504-2023

SW sweep width

4 Principle

4.1 Polyethylene samples are dissolved in the deuterated solvent and put in the magnetic field. Radio pulses are applied to excite the nuclei, and a set of resonance signals are generated from nuclei with different chemical circumstances. With proper excitation pulse or pulses combination, the intensities of a resonance signal are proportional to the molar fractions of nuclei with identical or similar chemical circumstances. A linear relationship is established between the carbon molar content of different chemical shifts and the comonomer content. In this document, two methods with different NMR pulse programs are established to acquire ¹³C NMR spectra. Method A utilizes the "single pulse with inverse gated proton decoupling" NMR pulse program to excite the ¹³C nuclei directly. Method B excites the proton initially by the "Refocused INEPT with proton decoupling" NMR Pulse program to enhance the signal sensitivity of ¹³C nuclei. The principles of two different NMR spectrometer pulse programs are shown in Annex H.

5 Reagents and materials

- **5.1 Deuterated reagents,** deuterated *ortho*-dichlorobenzene, or *para*-dichlorobenzene (*o*-DCB-*d*4 or *p*-DCB-*d*4), or 1,1,2,2-tetrachloroethane-d2 (TCE-d2), analytical grade.
- **5.2 Relaxation reagents,** chromium (III) acetylacetonate, analytical grade.

6 Apparatus

- **6.1 PFT-NMR spectrometer**, with a minimum magnet field strength of 7,05 Tesla (equivalent proton resonance frequency at 300 MHz, or 13 C nuclei resonance frequency at 75 MHz), capable of being maintained at 120 °C ± 1 °C.
- **6.2** Analytical balance, accurate to 1 mg.
- **6.3 Sample tube**, capped NMR tube with 5 mm or 10 mm outer diameter.
- **6.4 Adjustable pipette**, 5 ml capacity, meet the requirement of Class A defined in ISO 648.
- **6.5 Supplementary heating equipment**, capable of uniformly heating the samples to 130 C \pm 1 °C. It can ensure that the sample tube is kept in a vertical position during the heating process.

7 Preparation and preservation of test samples

Test samples can be obtained from materials in the form of powders, pellets, or moulded parts. To ensure the required accuracy of sample mass, large samples should be cut into smaller pieces. It is important that the laboratory receive a sample which is representative and has not been damaged or changed during transport or storage.

8 Method A — Inverse gated decoupling method

8.1 Sample preparation

8.1.1 Weigh approximately 30 mg of the test sample, put them into a diameter 5 mm sample tube (6.3) or weigh approximately 120 mg of the test sample, put them into a diameter 10 mm sample tube (6.3).

NOTE In some cases, larger sample mass is preferred to get a satisfying result. Any sample mass larger than the minimum requirement of 8.1.1 can be chosen, as long as the sample is able to be dissolved at $120\,^{\circ}$ C to $130\,^{\circ}$ C.

- **8.1.2** Add 0,4 ml to 0,6 ml of deuterated reagent ($\underline{5.1}$) using adjustable pipette ($\underline{6.4}$) to 5 mm sample tube ($\underline{6.3}$), or 1,6 ml to 2,0 ml of deuterated reagent ($\underline{5.1}$) using adjustable pipette ($\underline{6.4}$) to 10 mm sample tube ($\underline{6.3}$). Solution concentration can be modified according to the instrument magnetic field strength, on condition that the minimum signal to noise ratio should meet <u>Table 1</u>.
- 8.1.3 Uniformly heat the sample part in the tube on a supplementary heating device at 120 °C to 130 °C until the whole sample is well dissolved in deuterated reagent, appropriate mechanical stirring is helpful for better dissolution of the sample in the deuterated reagent. Keep the sample tube in a vertical position during the heating step.

NOTE Any method for uniformly dissolution can be acceptable.

8.2 Procedure

8.2.1 Turn on the PFT-NMR Spectrometer (6.1) and warm up to readiness. Set up the PFT-NMR Spectrometer and detection instrument parameters. The instrument recommended parameters of method A are listed in Table 1.

Table 1 — Instrument parameters of method A

Parameters	Unit	Value
Pulse program		single pulse with inverse gated proton decoupling
Decoupling mode		composite pulse decoupling
Measurement temperature		120 °C ± 1 °C
Relaxation delay ^a	S	$\geq 5 \times T_{1, \text{max}}$ (13C nuclei)
Flip angle ^b	degree	90
Pulse width ^c	S	< 4 × SW (Hz) ⁻¹
Sweep width	Hz/ MHz	100
Offset resonance frequency of ¹³ C nuclei	Hz/ MHz	30
Window function (exponential)		2
Zero-filling	_	Equal to the time domain data size
LOQ d	NDA	SNR (branch CH-carbon peak): ≥ 20:1 and
Į u	_	SNR (isolated methylene carbon peak) : ≥ 4000:1
LOD d	nua	SNR (branch CH-carbon peak): ≥ 3:1 and
ր ս		SNR (isolated methylene carbon peak) : ≥ 4000:1

For most samples, 10 s is enough for method A to get a quantitative result. T_1 of 13 C nuclei can be determined for each sample. Precise T_1 of different carbon types in polyethylene copolymer are listed in Annex E by inversion recovery method.

- **8.2.2** Transfer the sample tube to the NMR spectrometer and equilibrate 10 min to 30 min.
- **8.2.3** Calibrate the 90° pulse width of ¹³C nuclei before measurement.
- **8.2.4** Acquire the spectra. Execute phase and baseline correction requirement according to the spectrometer operation manual [8][9].

NOTE Automatic spectra phase and baseline correction program which built-in acquisition software can be used to get a satisfying result.

8.2.5 Calibrate the maximum intensity peak (isolated methylene carbons) to 30 Hz/MHz.

8.3 Calculation

8.3.1 Use the obtained NMR spectrum to measure and sum the area between the appropriate integration limits in accordance with $\underline{\text{Annex A}}$.

b The set flip angle of 90° can satisfy method A to obtain quantitative results. In the case of high magnetic field NMR system, the flip angle range can be set from 30° to 90°.

^c The sweep width for method A is set based on the 100 MHz nuclear magnetic field strength of ¹³C.

The limit of quantification and limit of detection depends on the signal-to-noise ratio of the acquired spectrum. The chemical shift region of branch CH-carbon of different co-monomers have been listed in Annex F. The signal to noise ratio of branch CH-carbon is defined as the signal intensity for the region which given in Annex F divided by the peak-to-peak noise for the region from 50 Hz/MHz to 70 Hz/MHz. The signal to noise ratio of isolated methylene carbons is defined as the signal intensity for the region of 29 Hz/MHz to 31 Hz/MHz peaks divided by the peak to peak noise for the region from 50 Hz/MHz to 70 Hz/MHz.

- **8.3.2** The results are substituted into the formulae in $\underline{Annex B}$. The sum of peak integral is substituted into the corresponding formula in $\underline{B.1}$ [i.e. $\underline{Formulae\ (B.1)}$ to $\underline{(B.5)}$] to calculate the mole percent 1-olefins. For calculation examples of method A, see $\underline{Annex\ C}$.
- **8.3.3** Use Formula (B.11) to convert the result from the mole percentage of 1-olefin to the number of branches per 1 000 carbons (br/1 000 C).

9 Method B — Insensitive nuclei enhanced by polarization transfer method

9.1 Sample preparation

- **9.1.1** See **8.1.1**.
- **9.1.2** See **8.1.2**.
- **9.1.3** See **8.1.3**.

9.2 Procedure

9.2.1 Instrument recommended parameters of method B are listed in <u>Table 2</u>. For other content, see 8.2.1.

Parameters	Unit	Value
Pulse program	_	refocus INEPT with proton decoupling
Decoupling mode		composite pulse decoupling
Measurement temperature		120 °C ± 1 °C
Relaxation delay ^{a, b}	S	$\geq 5 \times T_{1, \text{max}}$ (¹ H nuclei)
Polarization transfer time ^b	S	2×10-3
Refocus time ^{b, c}	S	2,15×10 ⁻³
Pulse width ^d	S	< 4 × SW (Hz) ⁻¹
Sweep width	Hz/ MHz	100
Offset resonance frequency of ¹³ C nuclei	Hz/ MHz	30

Table 2 — Instrument parameters of method B

NOTE Additional relaxation reagents (chromium (III) acetylacetonate) can be used for sample preparation. The 1 H nuclei T_1 value of copolymer can be 3 to 5 times reduced by adding 0,35 mg of additional relaxation agent to 5 mm sample tube, or 1,4 mg of additional relaxation agent to 10 mm tube, in procedure 9.1.2.

- For most samples, 5 s of relaxation delay is enough by adding relaxation reagent to get a quantitative result. Precise T_1 value of different 1H nuclei can be determined for each sample. T_1 of different 1H nuclei types in polyethylene copolymer are listed in $\underline{\text{Annex E}}$ by inversion recovery method.
- See pulse program diagram in Annex H for more details.
- Some commercial NMR console do not bear the function of editing the polarization transfer time and refocus time directly at parameter setting interface, in this case, tests with some deviation on the polarization transfer time at a price of slightly lower SNR give equally satisfactory results.
- $^{
 m d}$ The sweep width for method B is set based on the 100 MHz field strength of 13 C.
- The limit of quantification and limit of detection depends on the signal-to-noise ratio of the acquired spectrum. The chemical shift region of branch CH-carbon of different co-monomers have been listed in Annex F. The signal to noise ratio of branch CH-carbon is defined as the signal intensity for the region which given in Annex F divided by the peak to peak noise for the region from 50 Hz/MHz to 70 Hz/MHz . The signal to noise ratio of isolated methylene carbons is defined as the signal intensity for the region of 29 Hz/MHz to 31 Hz/MHz peaks divided by the peak to peak noise for the region from 50 Hz/MHz to 70 Hz/MHz.

Table 2 (continued)

Parameters	Unit	Value
Offset resonance frequency of ¹ H nuclei	Hz/ MHz	1,2
Window function (exponential)		2
Zero-filling	_	Equal to the time domain data size
LOQ e	_	SNR (branch CH-carbon peak): ≥ 20:1 and SNR (isolated methylene carbon peak): ≥ 4000:1
LOD e		SNR (branch CH-carbon peak): ≥ 3:1 and SNR (isolated methylene carbon peak): ≥ 4000:1

NOTE Additional relaxation reagents (chromium (III) acetylacetonate) can be used for sample preparation. The 1 H nuclei T_1 value of copolymer can be 3 to 5 times reduced by adding 0,35 mg of additional relaxation agent to 5 mm sample tube, or 1,4 mg of additional relaxation agent to 10 mm tube, in procedure 9.1.2.

- For most samples, 5 s of relaxation delay is enough by adding relaxation reagent to get a quantitative result. Precise T_1 value of different 1H nuclei can be determined for each sample. T_1 of different 1H nuclei types in polyethylene copolymer are listed in $\underline{\text{Annex E}}$ by inversion recovery method.
- b See pulse program diagram in Annex H for more details.
- Some commercial NMR console do not bear the function of editing the polarization transfer time and refocus time directly at parameter setting interface, in this case, tests with some deviation on the polarization transfer time at a price of slightly lower SNR give equally satisfactory results.
- d The sweep width for method B is set based on the 100 MHz field strength of ¹³C.
- The limit of quantification and limit of detection depends on the signal-to-noise ratio of the acquired spectrum. The chemical shift region of branch CH-carbon of different co-monomers have been listed in Annex F. The signal to noise ratio of branch CH-carbon is defined as the signal intensity for the region which given in Annex F divided by the peak to peak noise for the region from 50 Hz/MHz to 70 Hz/MHz . The signal to noise ratio of isolated methylene carbons is defined as the signal intensity for the region of 29 Hz/MHz to 31 Hz/MHz peaks divided by the peak to peak noise for the region from 50 Hz/MHz to 70 Hz/MHz.

<u>180 4504:2023</u>

- **9.2.2** See <u>8.2.2</u> and ards. iteh.ai/catalog/standards/sist/f0c00635-a429-4a85-aef4-589054eac8c3/iso-
- **9.2.3** Calibrate the 90° pulse width of ¹H nuclei before measurement [7].
- **9.2.4** See 8.2.4.
- **9.2.5** See 8.2.5.

9.3 Calculation

- **9.3.1** See <u>8.3.1</u>.
- **9.3.2** Sum of peak integral is substituted into the corresponding formula in <u>B.2</u> [Formula (B.6) to (B.10) to calculate the mole percent 1-olefins. For calculation examples of method B, see <u>Annex D</u>.
- **9.3.3** See 8.3.3.

10 Expression of results

- **10.1** Express the result as a calculation result of once measurement value.
- **10.2** The calculated result is the content of the second monomer in the sample, expressed as a percentage.

10.3 The result should be reported in one decimal.

11 Precision

Precision data have been determined by testing involving 7 laboratories and 4 different polyethylene samples. The results are summarized in $\underline{\text{Annex }G}$.

The purpose of consistency test is to compare whether the results obtained by different methods are consistent. To verify whether the results of the two methods are consistent, results of the intra lab Student t-test and inter lab Student t-test are shown in Annex I.

12 Test report

The test report shall include the following information:

- a) a reference to this document, i.e. ISO 4504:2023;
- b) full description of the sample and its origin;
- c) the number of test portions used, and the mass of each;
- d) the method used (method A or method B);
- e) the details of any operation not included in this document, together with details of any incidents which may have influenced the results, such as the NMR parameters if different from those specified;
- f) the test result obtained, including the results of the individual determinations;
- g) the date of the test.

ISO 4504:2023

https://standards.iteh.ai/catalog/standards/sist/f0c00635-a429-4a85-aef4-589054eac8c3/iso-4504-2023

Annex A

(normative)

Spectral integration method and integration limits outlines

Use regions given in $\underline{\text{Table A.1}}$ to find the peaks in the specific regions. Calculate the integrations of these peaks.

Table A.1 — Integration limits for ethylene copolymers

C	A	Region Hz/MHz	
Co-monomer	Area		
	A _p	47,5~44,5	
	B _p	39,8~36,8	
	C _p	35,5~32,5	
Propene	D _p +E _p	32,5~25,8	
	Fp	25,8~23,8	
	$G_{\rm p}$	22,5~18,5	
	TANH _p JAR	Peak at 21,6	
	A _B	41,5~38,5	
	Stalla' _B aru	Peak at 39,4	
1 hutone	B _B	37,8~36,8	
1-butene	C _B SO 4504	2023 36,0~33,2	
	log/starDa+EB/sist/f(c00635-a429-4a833,2~25,59054eac8c3/iso-	
	F _B 4504-2	25,2~24,0	
	A _H	41,5~40,5	
	B _H	40,5~39,5	
	C _H	39,5~37,0	
1 h	D _H	Peak at 35,8	
1-hexene	E _H	35,2~33,2	
	F _H +G _H	33,2~25,5	
	G_{H}	28,5~26,5	
	H _H	24,9~24,1	
	A _O	41,5~40,5	
	B ₀	40,5~39,5	
	C _O	39,5~37,0	
	D_0	Peak at 35,8	
1-octene	E _O	35,4~33,2	
	$F_0+G_0+H_0$	33,2~25,5	
	H ₀	28,5~26,5	
	I ₀	25,0~24,0	
	J_0	24,0~22,0	
NOTE Calibrate the maximum intensity pea		arbons) to 30,0 Hz/MHz prior to integrate the spectra.	