INTERNATIONAL STANDARD

ISO 7905-1

Second edition 2021-04

Plain bearings — Bearing fatigue —

Part 1:

Plain bearings in test rigs and in applications under conditions of hydrodynamic lubrication

Paliers lisses — Fatigue des paliers —

Partie 1: Paliers dans les machines d'essai et dans les applications en lubrification hydrodynamique

Document Preview

ISO 7905-1:2021

https://standards.iteh.ai/catalog/standards/iso/42a38f0d-228d-4ac1-ba54-beaef4564740/iso-7905-1-202

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 7905-1:2021

https://standards.iteh.ai/catalog/standards/iso/42a38f0d-228d-4ac1-ba54-beaef4564740/iso-7905-1-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Forev	word			iv
1	Scope			
2	Normative references			
3	Terms and definitions			
4	Objective of testing			2
5	Requ 5.1 5.2			
6	Test p 6.1 6.2	General Characteristic conditions		
		6.2.1 6.2.2	Effective running-in procedure Avoidance of deviation in the geometry of the structural elements of the plain bearing assembly	3
		6.2.3 6.2.4 6.2.5	Effective temperature of the bearing and hydrodynamic film Dynamic load amplitude and direction as a function of time Number of load cycles required to effect the first fatigue damage.	4
	6.3	6.3.1 6.3.2	teristic information	4 4 4
		6.3.3 6.3.4 6.3.5 6.3.6	Test bearing description	4 5
		6.3.7 6.3.8 6.3.9	Test temperatures description Test film thickness description Test film pressure description	5 5
				2.0.2.1 5
7	Evaluation of stress in bearing materials			
Anne	x A (inf	ormative	e) Evaluation of stress	7
Rihli	ogranh	V		15

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 123, *Plain bearing*, Subcommittee SC 2, *Material and lubricants, their properties, characteristics, test methods and testing conditions*.

This second edition cancels and replaces the first edition (ISO 7905-1:1995), which has been editorially revised.

The main changes compared to the previous edition are as follows: 61-ba54-beaef4564740/iso-7905-1-2021

- normative references have been updated;
- additional explanation for the test methods have been added.

A list of all parts in the ISO 7905 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Plain bearings — Bearing fatigue —

Part 1:

Plain bearings in test rigs and in applications under conditions of hydrodynamic lubrication

1 Scope

This document specifies a method of improving test result comparability by evaluating the stresses in the bearing layers leading to fatigue (see Annex A). A similar evaluation is required in practical applications. Because the stresses are the result of pressure build-up in the hydrodynamic film, it is essential to fully state the conditions of operation and lubrication. In addition to dynamic loading, dimensional and running characteristics, the inclusion of the following adequately defines the fatigue system:

- a) under conditions of dynamic loading the minimum bearing oil film thickness as a function of time and location to ensure no excessive local overheating or shearing as a result of mixed lubrication when running in;
- b) the distribution of pressure circumferentially and axially with time under dynamic loading;
- c) from this the resulting stresses in the bearing layers as a function of time and location, especially the maximum alternating stress.

Furthermore, bearing fatigue can be affected by mixed lubrication, wear, dirt, tribochemical reactions and other effects encountered in use thus complicating the fatigue problem. This document is therefore restricted to fatigue under full hydrodynamic separation of the bearing surfaces by a lubricant film.

This document applies to oil-lubricated plain cylindrical bearings, in test rigs and application running in conditions of full hydrodynamic lubrication. It comprises dynamic loading in bi-metal and multilayer bearings.

NOTE The number of practical applications with different requirements has led to the development of many bearing test rigs. If the conditions of lubrication employed on these test rigs are not defined in detail, test results from different rigs are generally neither comparable nor applicable in practice. Different test rigs can yield inconsistent ranking among equal materials.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4287, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters

ISO 7902-1, Hydrodynamic plain journal bearings under steady-state conditions — Circular cylindrical bearings — Part 1: Calculation procedure

ISO 7902-2, Hydrodynamic plain journal bearings under steady-state conditions — Circular cylindrical bearings — Part 2: Functions used in the calculation procedure

ISO 7902-3, Hydrodynamic plain journal bearings under steady-state conditions — Circular cylindrical bearings — Part 3: Permissible operational parameters

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Objective of testing

In this document the objective of testing with plain bearing test rigs, operating in conditions of full hydrodynamic lubrication, is to measure the dynamic load-carrying capacity e.g. the fatigue endurance limit of the bearing layer material in terms of amplitude of stress and number of cycles. This may be presented as a $\sigma_{\rm el}$ -N curve (endurance limit stress plotted against number of cycles), or as the endurance limit stress for a specified number of cycles. Endurance limit is reached when cracks (greater than 5 mm in length) appear in the bearing surface.

In terms of current understanding, the restriction to full hydrodynamic lubrication is a necessary simplification of the fatigue problem. This implies that the essential running-in of the bearing under test shall be carefully controlled to avoid significant predamage from excessive temperature and frictional shear stress which may cause surface microcracks.

It should be noted that fatigue testing of bearing materials may be conducted also by utilizing the more classic methods of testing. See ISO 7905-2 to ISO 7905-4.

5 Requirements

(https://standards.iteh.ai) **Document Preview**

5.1 Test rigs

In order to define the operating and lubricating conditions, the test rig shall have the following characteristics: $\frac{1}{1000} \frac{1}{1000} \frac{1$

- a) simple and clear mechanical construction;
- b) easy dismantling, preferably with an in situ bearing inspection capability;
- c) bearing dimensional stability under test together with resistance to deformation of housing and shaft deflection;
- d) adequate lubricant supply without impairing oil film pressure development;
- e) be capable of exceeding the entire range of load/stress and temperature encountered in practice.

5.2 Test methods

The test methods shall have the following characteristics:

- the ability to apply specialized measuring techniques for oil film thickness, lubricant temperature, pressure distribution and crack disintegration debris; such techniques for the latter aspect include continuous radio nuclide measurement of wear or X-ray fluorescent analysis of intermittently drained lubricant samples;
- b) well-defined, experimentally verified hydrodynamic conditions (e.g the verification of viscosity and operating conditions indicative of hydrodynamic behaviour);
- c) clear distinction between mixed lubrication during running-in and full hydrodynamic lubrication during fatigue testing:

- d) the stress can traverse the bearing as uniformly as possible (rotating load) in order to detect irregularities in the bearing material;
- e) simple, theoretically and experimentally reproducible hydrodynamic conditions (i.e. a rotating load produces a hydrodynamic film and pressure distribution equal to a static load);
- f) repeatable and reliable assembly of components.

6 Test procedures

6.1 General

In order to assure the compatibility of test results from different test rigs and their putting into practice, all parameters controlling the hydrodynamic oil film shall be detailed, starting with test conditions, bearing dimensions, lubricant and other factors influencing hydrodynamic oil film. The following constitute the essential characteristic conditions and parameters for fatigue testing.

6.2 Characteristic conditions

6.2.1 Effective running-in procedure

This is designed in order to avoid excessive temperature and frictional shear stress due to heavy asperity contact. The progress of running-in may be monitored by measurements of temperature, electrical resistance, impedance or continuous radio nuclide measurement. For guidance h_0 should initially be greater than $(Rz_b + Rz_s)$, where h_0 equals the minimum oil film thickness and shall be determined by measurement or calculation in accordance with ISO 7902-1 to ISO 7902-3, and Rz_b and Rz_s are the height of the profile irregularities in ten points of the bearing and the shaft face respectively, which shall be determined in accordance with ISO 4287. Polishing during running-in allows the value of h_0 to be reduced but during fatigue testing it should not be less than the initial value of Rz_s . The running-in procedure progressively reduces the minimum oil film thickness by a combination of reduced oil viscosity through increases in temperature, and by stepwise increases of load. The magnitude of load steps should be controlled by minimizing temperature spikes, excessive radio nuclide wear indication, or excessive duration of zero electrical contact resistance.

For electrical contact resistance control, the bearing is electrically isolated from the test rig. The electrical scheme should provide for monitoring a 10 mV difference of potential between the shaft and bearing at a supply point with 100 Ω . internal resistance, which drops to 0,01 mV during asperity contact. Load increments should be adjusted so as to minimize the duration of asperity contact.

WARNING — Radionuclides that find their way into the environment may cause harmful effects as <u>radioactive contamination</u>. They can also cause damage if they are excessively used during treatment or in other ways exposed to living beings, by <u>radiation poisoning</u>. Potential health damage from exposure to radionuclides depends on a number of factors and can damage the functions of healthy tissue/organs. Radiation exposure can produce effects ranging from skin redness and hair loss, to <u>radiation burns</u> and <u>acute radiation syndrome</u>. Prolonged exposure can lead to cells being damaged and in turn lead to cancer. Signs of cancerous cells might not show up until years, or even decades, after exposure^[16].

6.2.2 Avoidance of deviation in the geometry of the structural elements of the plain bearing assembly

This is to avoid results being affected and their transferability reduced. Such geometrical discrepancies may include housing distortion, shaft deflection or misalignment and uneven hard rub marks in the plain bearing surface.

6.2.3 Effective temperature of the bearing and hydrodynamic film

These values calculated and verified in accordance with ISO 7902-1, ISO 7902-2, ISO 7902-3 represent the temperature distribution uniformity. Alternatively, the temperatures of oil inlet, outlet splash in the main loaded area and bearing surface/subsurface are to be measured.

6.2.4 Dynamic load amplitude and direction as a function of time

These form the basis of evaluation of peripheral/axial film pressure distribution as a function of time and position on the bearing surface. Alternatively, the measurement of pressure distribution may be used. Either method is to be used for evaluating the dynamic stresses in the individual bearing layers in order to find the surface location of maximum stress in terms of the mean and alternating stress at the endurance limit.

Pressure measurement not affecting hydrodynamic film development and stress by gauges may be carried out by evaporated thin metal film techniques. The measurement should be conducted beforehand under the same conditions, but not during the fatigue testing procedure.

6.2.5 Number of load cycles required to effect the first fatigue damage

This damage should be in the form of a crack or cracks (greater than 5 mm in length) or breakout of bearing lining material. Normally $\sigma_{\rm el}$ -N curve testing is terminated for practical considerations at 50×10^6 stress cycles. The endurance limit stress may be quoted at a specified number of cycles; e.g. 3×10^6 , 10×10^6 , 25×10^6 or 50×10^6 . A specimen without failure during fatigue testing to a specified endurance should be identified in the report. Due to the scatter of test results normally experienced and the statistical nature of the fatigue limit, it is recommended that the results are evaluated on the basis of statistical methods.

6.3 Characteristic information

6.3.1 General

If the evaluation of the test results up to the endurance limit stress at fixed temperatures, controlled to ± 2 °C, is not carried out by the investigator himself then it will be necessary to fully report the information below. If the bearing material undergoes change during test (e.g. diffusion or a similar process) this should be documented as additional information (e.g. a metallurgical report). The information is subdivided in such a way that the data requirements may be reduced depending on the degree of detailed evaluation of the end result – the endurance limit stresses.

6.3.2 Test rig description

This should comprise the designation, construction, load principles, design limits, lubricant supply including ancillary equipment and the measuring method and arrangements.

6.3.3 Test bearing description

This should consist of the following dimensions: bearing, including different layer thicknesses; housing in the diametral and axial directions; clearance, especially under test conditions; surface roughness parameters. Additionally, the material designation should be provided comprising chemical composition, manufacturing processes with thermophysical treatment and static strength data including Young's modulus and Poisson's ratio.

6.3.4 Test journal description

This should include dimensions, surface roughness parameter, hardness, material and, if evident, deflection and misalignment values.

6.3.5 Specific details of test load

This should include amplitude and direction, as a function of time; frequency and shaft speed, both during running-in and fatigue testing; the duration of the test.

6.3.6 Designation of lubricant and supply

This should include:

- type of lubricant;
- viscosity-temperature and density-temperature relationships;
- feed pressure;
- detailed dimensions and location of supply holes (or grooves);
- flow rate.

6.3.7 Test temperatures description

This should comprise the film temperature in bulk and inlet; outlet splash and representative bearing temperature near the damage zone as close as possible to the surface without disturbing the film pressure development.

All of the above descriptions are necessary for evaluating the hydrodynamic status of the bearing under test. If the hydrodynamic status is evaluated, then the information required is restricted to the following, together with data on bearing material temperature.

6.3.8 Test film thickness description

This should consist of film thickness variation with time and location in the bearing and minimum film thickness related to roughness data during running-in and fatigue testing.

https: 6.3.9 d Test film pressure description / 42a3 8f0d-228d-4ac1-ba54-beaef4564740/iso-7905-1-2021

This should contain lubricant film pressure distribution and variation with time and location relative to the bearing surface, in such detail that pressure gradients are indicated with sufficient precision.

6.3.10 Description of the dynamic stresses of the test

This should include the distribution with time and location relative to the bearing surface in order to determine the position of maximum fatigue stress by mean and alternating stress at the endurance limit.

The results may be compared with data from other mechanical test methods (see ISO 7905-2 to ISO 7905-4) by means of the Haigh diagram in which stress amplitude is plotted against mean stress.

6.3.11 Other test results

These should comprise a description of the damage; position and extent of cracking; absence or presence of wear or scoring; together with any findings resulting from a metallurgical examination. If measurable wear has occurred, i.e. more than light polishing, when no breakout of lining material has occurred, it shall be concluded that the oil film thickness is inadequate and the conditions of the test shall be changed in order to avoid wear.

7 Evaluation of stress in bearing materials

Evaluation of the stress relevant to fatigue is simpler if the hydrodynamic conditions are easily reproduced. The simplest dynamic load condition is one of pure rotation represented by a shaft loaded

ISO 7905-1:2021(E)

with out-of-balance masses to reduce shaft deflection. The hydrodynamic film condition is one of a purely rotating pressure which is most exactly describable by a calculation model. A predetermination at the representative mean and alternating stress at fixed Sommerfeld numbers and bearing width ratios is possible, if the following assumptions are applied: a cylindrical bearing; no significant misalignment or distortion; an optimum oil supply with film pressure development unimpaired; a fixed relationship of housing dimension, Young's modulus and Poisson's ratio (see Annex A).

In order to cause failure by fatigue in high strength material without wear or seizure it will be necessary to select the hydrodynamic characteristics (clearance, lubricant viscosity and very low surface roughness) to provide sufficient minimum oil film thickness to prevent metallic contact. It may also be possible to perform a similar determination for test rigs with a unidirectional pure sinusoidal load.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 7905-1:2021

https://standards.iteh.ai/catalog/standards/iso/42a38f0d-228d-4ac1-ba54-beaef4564740/iso-7905-1-2021