INTERNATIONAL STANDARD

ISO 20427

First edition 2023-11

Pigments and extenders — Dispersion procedure for sedimentation-based particle sizing of suspended pigment or extender with liquid sedimentation methods

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 20427:2023

https://standards.iteh.ai/catalog/standards/sist/a935b139-2712-4c93-bf10-b9a4778b8993/iso-20427-2023

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 20427:2023

https://standards.iteh.ai/catalog/standards/sist/a935b139-2712-4c93-bf10-b9a4778b8993/iso-20427-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	Pag				
Fore	word	iv			
1	Scope				
2	Normative references				
3	Terms and definitions				
_					
4	Principles of dispersion				
	4.2 Principle of wet jet mill dispersion				
	4.3 Principle of shaker-based dispersion				
5	Principles of sedimentation-based techniques for particle size analysis				
	5.1 Stokesian sedimentation analysis				
	5.2 Disk-type centrifuges	4			
	5.3 Cuvette-type centrifuges				
	5.4 Gravitation-based sedimentation methods				
	5.5 Centrifugal field-flow fractionation method	5			
6	Apparatus	5			
7	Settings for dispersion	7			
	7.1 Procedure of ultrasonic dispersion using a probe-type sonicator				
	7.2 Procedure of ultrasonic dispersion using a bath-type sonicator	8			
	7.3 Procedure of shaker-based dispersion	8			
8	Dispersion procedure	9			
	8.1 General TIMS / ST2MQ2KQS ITAM 211				
	8.2 Sampling for dispersion	9			
	8.3 Reagents	9			
	8.4 Recommendations for sample preparation				
9	Sampling	10			
10 tar	Measurement and expression of results	202310			
11	Test report	10			
Anne	ex A (normative) Protocol for the determination of energy input	12			
Anne	ex B (informative) Limits for ultrasonic dispersion procedure	15			
	ex C (informative) Procedures for dispersion of TiO₂ pigments				
Anne	ex D (informative) Procedure for dispersion of CaCO ₃ with wet jet milling	17			
	ex E (informative) Procedure for the dispersion of Fe ₂ O ₃ with an ultrasonic probe				
Anne	ex F (informative) Procedure for dispersion of carbon black	19			
	ex G (informative) General procedure for dispersion of pigment or extender				
Bibli	ography	22			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 256, *Pigments, dyestuffs and extenders*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Pigments and extenders — Dispersion procedure for sedimentation-based particle sizing of suspended pigment or extender with liquid sedimentation methods

1 Scope

This document specifies sample preparation methods to determine the size distribution of separate particles of a single pigment or extender, which is dispersed in a liquid by application of a standardized dispersion procedure, using an ultrasonic device, shaker device or wet jet mill.

The sample preparation methods described are optimized for measurements carried out with a particle sizing technique based on sedimentation. This technique relies on particle migration due to gravitation or centrifugal forces and requires a density contrast between the particles and the liquid phase.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 9276-1, Representation of results of particle size analysis — Part 1: Graphical representation

ISO 13317-1, Determination of particle size distribution by gravitational liquid sedimentation methods — Part 1: General principles and guidelines

ISO 13317-2, Determination of particle size distribution by gravitational liquid sedimentation methods — Part 2: Fixed pipette method

ISO 13317-3, Determination of particle size distribution by gravitational liquid sedimentation methods — Part 3: X-ray gravitational technique

ISO 13317-4, Determination of particle size distribution by gravitational liquid sedimentation methods — Part 4: Balance method

ISO 13318-1:2001, Determination of particle size distribution by centrifugal liquid sedimentation methods — Part 1: General principles and guidelines

ISO 13318-2, Determination of particle size distribution by centrifugal liquid sedimentation methods — Part 2: Photocentrifuge method

ISO 13318-3, Determination of particle size distribution by centrifugal liquid sedimentation methods — Part 3: Centrifugal X-ray method

ISO 15528, Paints, varnishes and raw materials for paints and varnishes — Sampling

ASTM D5965, Standard Test Methods for Density of Coating Powders

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO 20427:2023(E)

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

nanoscale

length range from approximately 1 nm to 100 nm

Note 1 to entry: Properties that are not extrapolations from a larger size are predominantly exhibited in this size range. For such properties, the size limits are considered approximate.

Note 2 to entry: The lower limit in this definition (approximately 1 nm) is introduced to avoid single and small groups of atoms from being designated as nano-objects or elements of nanostructures, which can be implied by the absence of a lower limit.

[SOURCE: ISO 80004-1:2023, 3.1.1 — modified, notes 1 and 2 to entry have been added.]

3.2

nanoparticle

nano-object with all external dimensions in the *nanoscale* (3.1) where the lengths of the longest and the shortest axes of the nano-object do not differ significantly

Note 1 to entry: If the dimensions differ significantly (typically by more than three times), terms such as nanofibre or nanoplate may are preferred to the term nanoparticle.

[SOURCE: ISO 80004-1:2023, 3.3.4, modified — "where the lengths of the longest and the shortest axes of the nano-object do not differ significantly" has been added to the definition.]

3.3

agglomerate

collection of weakly or medium strongly bound particles where the resulting external surface area is similar to the sum of the surface areas of the individual components

Note 1 to entry: The forces holding an agglomerate together are weak forces, for example van der Waals or simple physical entanglement.

Note 2 to entry: Agglomerates are also termed secondary particles and the original source particles are termed *primary particles* (3.5).

[SOURCE: ISO 80004-1:2023, 3.2.4]

3.4

aggregate

particle comprising strongly bonded or fused particles where the resulting external surface area is significantly smaller than the sum of surface areas of the individual components

Note 1 to entry: The forces holding an aggregate together are strong forces, for example covalent or ionic bonds, or those resulting from sintering or complex physical entanglement, or otherwise combined former *primary particles* (3.5).

Note 2 to entry: Aggregates are also termed secondary particles and the original source particles are termed *primary particles* (3.5).

[SOURCE: ISO 80004-1:2023, 3.2.5, modified — "or otherwise combined former primary particles" has been added to the end of note 1 to entry.]

3.5

primary particle

single nano-object with at least one of three external dimensions at the nanoscale

Note 1 to entry: Sometimes, if the primary particle is present in crystalline form, it also contains twinning boundaries.

3.6

spin fluid

inert liquid which is injected into the disc of a disc centrifuge photosedimentometer prior to the sample to define a certain radius dependent gradient of viscosity for sedimentation

Note 1 to entry: Alkaline conditions minimize agglomeration of dispersed aggregates in most cases.

3.7

wet jet milling

dispersing method of particles in liquid phase using the complex shear force arising from turbulent flow in the channel and cavitation from the abrupt pressure change

Note 1 to entry: This method is also called high pressure homogenizer method.

4 Principles of dispersion

4.1 Principles of ultrasonic dispersion

A piezo electrical ceramic material is driven by an applied alternating current electrical field to expand and shrink periodically at an ultrasonic frequency in the range of 15 kHz up to 80 kHz and more. This movement creates acoustic waves moving through the dispersion, which produce cavitation bubbles. The collapse of these cavitation bubbles leads locally to strong thermal effects and shear-stress, which are responsible for the destruction of agglomerates and even aggregates.

Energy density of sonication, temperature and particle volume concentration of the dispersion are critical parameters of sonication and should be held at recipe values strictly.

In addition to probe-type sonicators ultra sonic (US) baths, inverted cup-horn sonicators and so-called vial-tweeters also exist. US baths, cup-horn dispersers and vial-tweeters are known as indirect dispersers, where sound energy is inserted via the wall of the container. Determining the energy input of these dispersers is much more difficult than for probe sonication, but contamination is reduced^[9].

4.2 Principle of wet jet mill dispersion

The wet jet milling method is a wet-type milling to disintegrate agglomerates of powder samples in liquid. In this method, particles suspended in a liquid medium are passed through a narrow channel at high pressure. Then, the suspension of the particles is enhanced by the complex shear force arising from turbulent flow in the channel. In addition, the high pressure in the narrow channel induces the cavitation bubbles from the abrupt pressure change. The burst of the cavitation bubbles then work to disperse powder samples in the liquid phase, as in the ultra-sonication method. The advantage of this dispersion technique is that it yields suspensions with low contamination, unlike the ultra-sonic homogenizer method. The pressure range is the important factor to disperse the powder samples in the liquid phase. Typically, the pressure range is from 80 MPa to 245 MPa[10][11].

4.3 Principle of shaker-based dispersion

The shaker device should be built like a plate with holders for the high-density polyethylene (HDPE) bottles (see <u>Annex B</u>). A successful dispersion is achieved when the plate is shaking vertically from back to front with a vibration amplitude of minimum 32 mm and a frequency of 660 Hz.

Important aspects are:

- inclusion of grinding beads, high loading;
- particle dispersion limitations: agglomerates/aggregates <100 μm in a liquid (viscous medium);
- grinding beads are agitated by rotary, tumbling and/or 2D-vibratory motion of the container/vessel;

— shear and elongational stress on agglomerates at squeezing of liquid between colliding grinding beads and impulse exchange from collisions of agglomerates with grinding beads^{[12][13]}.

5 Principles of sedimentation-based techniques for particle size analysis

5.1 Stokesian sedimentation analysis

For all sedimentation-based procedures for particle sizing which are cited in this document, Stokesian sedimentation analysis of dispersions is used. ISO 13318-1:2001, 4.1 describes in detail the general procedure and calculations used to approach a particle size distribution of dispersed particles.

5.2 Disk-type centrifuges

The particles settle within an optically clear, rotating disc. When particles approach the outside edge of the rotating disc, they block/scatter a portion of a light beam or X-ray beam that passes through the disc. The change in light intensity shall be continuously recorded, and converted by the operating software into a particle size distribution, in accordance with ISO 13318-1.

Instead of detecting the local particle concentration with optical turbidity, X-ray absorption shall be used in certain instruments with the advantage of direct particle mass dependency, in accordance with ISO 13318-3.

5.3 Cuvette-type centrifuges

The cuvette-type centrifuge is a special analytical centrifuge that instantaneously measures the particle concentration at one or more radial positions within the rotating sedimentation cuvette.

For instance, space- and time-resolved extinction of the transmitted light across the entire length of the sample allows the analysis of particle and droplet velocity distributions for creaming and sedimentation phenomena without the need of any material data. This process additionally performs particle sizing according to ISO 13318-2.

The centrifugal speed of these instruments is typically between $50\,\text{min}^{-1}$ and $60\,000\,\text{min}^{-1}$. Instruments $2023\,\text{min}^{-1}$ are typically called cuvette centrifuges. Devices which can rotate above $10\,000\,\text{min}^{-1}$ rotation are called ultracentrifuge. For centrifugal speeds greater than $6\,000\,\text{min}^{-1}$, the detection of particle sizes is limited to $1\,\mu\text{m}$ or below.

5.4 Gravitation-based sedimentation methods

The gravitation-based liquid sedimentation shall be executed using four different techniques: the fixed pipette method in accordance with ISO 13317-2, the X-ray gravitation-based technique in accordance with ISO 13317-3, the balance method in accordance with ISO 13317-4 and gravitation-based photo sedimentation.

With the balance method as well as with the pipette method in accordance with ISO 13317-2, a resolution below 1 μm is critical because of the limitations of the used detection mechanisms. The X-ray sedimentation on the other hand depends on vibration isolation and detector quality. It can resolve 100 nm, similar to the photo sedimentation.

Therefore, only the liquid X-ray sedimentation in accordance with ISO 13317-1 and ISO 13317-3 is included in this document.

The concentration of a dispersed sample is measured by the attenuation of an X-ray beam. A stable, narrow, monochromatic collimated beam of X-rays passes through a suspension of the sample and is detected at a known distance from the top of the sample cell. The sample cell is filled completely with the sample suspension for the duration of the analysis. The settling height at which the particle concentration is determined may be reduced during the analysis for the purpose of obtaining a more rapid analysis compared to an analysis where all measurements are made at the same height value.

The cumulative mass percentage of the sample present at a given sedimentation height is continuously determined. The X-ray signal attenuation at the known height is compared to the attenuation in the suspending liquid and also to the attenuation in the homogeneously dispersed sample present in the liquid. The attenuation of the emergent X-ray beam is proportional to the mass of the powder in the beam.

5.5 Centrifugal field-flow fractionation method

Field-flow fractionation is a flow-based separation methodology. Centrifugal field-flow fractionation (CF3) is a separation technique that uses a centrifugal field applied perpendicular to a circular channel that spins around its axis to achieve size separation of particles between the limits of 10 nm and 50 µm. In this method, separation is governed by a combination of size and effective particle density, indicating that applicable size range is dependent on and limited by the effective particle density. In CF3, the mobile phase and analyte flow longitudinally through the channel. The channel is designed to separate the sample components along its length, resulting in the elution of constituents at different times. The channel and its large aspect ratio are designed to promote parabolic or near-parabolic laminar flow between two infinite planes under normal operational conditions. Fractionation is achieved during passage through the channel, based on the velocity flow profile, after which the mobile phase containing separated constituents exits to online detectors and/or a fraction collector for off-line analysis. Common detectors used for analysis of pigment and extender include ultraviolet-visible (UV-Vis) absorbance, fluorescence, multi-angle light scattering (MALS), dynamic light scattering (DLS) and element detectors such as the inductively coupled plasma mass spectrometer (ICP-MS). Combinational analysis of the sizing and concentration evaluation detectors, as well as the size distribution analysis have been performed using this method according to ISO/TS 21362.

6 Apparatus

Use standard laboratory apparatus, together with the following.

6.1 Apparatus for ultrasonic dispersion

6.1.1 Probe-type sonicator, with at least 100 W power and a frequency of 10 kHz to 100 kHz.

This type of sonicator has been found to be an effective means of dispersing particulate materials in liquid dispersion from agglomerates into discrete primary particles or/and aggregates. The temperature of the dispersion during sonication should be held as low as possible, around typical room temperature, in order to maintain conditions for good stability of the dispersing agents.

6.1.2 Bath-type sonicator, with at least 50 W power and a frequency of 10 kHz to 100 kHz.

6.2 Apparatus for wet jet milling dispersion

The apparatus for wet jet milling is designed to disperse, crush, emulsify and surface-modify the material pressurized to a maximum of 245 MPa^[14][15]. This apparatus consists of various components containing a high-voltage section and ultra-high-pressure section each. In the wet jet milling apparatus, the powder suspension pressurized by the pressure intensifier is branched in the apparatus chamber and accelerated by the nozzle in the chamber so that the dispersions collide with each other to achieve micronization. The maximum jet pressure depends on the nozzle diameter. The typical values of the nozzle diameter are from 0,05 mm to 0,15 mm. Materials with a particle diameter smaller than the nozzle diameter can be applied in order to prevent the nozzle from becoming clogged. It is recommended that the maximum particle diameter is smaller than half of the nozzle diameter. The apparatus should be equipped with a leakage sensor. When a liquid leakage from the high-pressure cylinder is discovered, the instrument stops the milling. The typical handling amount is about 0,1 l/min and the applicable solvents for this system are both organic and aqueous solvents. However, it is recommended to use water as solvent in principle; using organic solvent such as acetone, alcohol, acid or alcohol can influence sealing sections of apparatus for wet jet milling.

WARNING — Ignoring safety precautions and wrong handling or operation can cause serious or minor injuries and damage to this apparatus or other properties.

WARNING — Do not operate the apparatus with the solvent boiling point exceeded. Blow-off of the material or solvent caused by bumping or equipment damage caused by high-pressure steam can injure the body.

See <u>Annex D</u> for an example of a detailed procedure of wet jet milling dispersion, as well as a detailed description for energy estimation.

- **6.3 Apparatus for shaker-based dispersion**, such as Disperser DAS¹).
- **6.4 Analytical balance**, accurate to the nearest 0,1 mg.
- **6.5 Beaker**, based on the sonicator size, 50 cm³ to 300 cm³ tall-form.
- 6.6 Magnetic stirring device with stirrer bar
- **6.7 Syringes**, 1 cm³, 2 cm³, 10 cm³ and 20 cm³ or better corresponding pipettes.
- 6.8 Cooled bath

6.9 Liquid sedimentation-based detection systems for particle size measurement

<u>Table 1</u> and <u>Table 2</u> show liquid sedimentation-based device examples for measuring instruments which are available at the time of publication of this document.

Table 1 — Examples for currently available measuring instruments

Туре	Photo-centrifuge		X-ray-centrifuge	Analytical ul- tra-centrifuge
https://standards	Disc centrifuge	Cuvette centri- fuge	Disc centrifuge	610-b9a477 Cuvette centri-7 fuge
Wavelength	405 nm or 470 nm or 650 nm	Multiple wave- lengths 405 nm to 870 nm	Data to be delivered from apparatus manufacturer	Optical multiple wave- lengths or xenon light
Acceleration range at the bottom Not preferred: Rotation speed	600 min ⁻¹ to 24 000 min ⁻¹	500 min ⁻¹ to 4 000 min ⁻¹ 5 times to 2 300 times earth grav- ity (at cell bottom)	600 min ⁻¹ to 18 000 min ⁻¹	(middle of cell) 1 000 min ⁻¹ to 60 000 min ⁻¹
Type of detection	Light extinction versus time	Light extinction versus time and position	X-ray extinction versus time	Light extinction or refractive index versus time
Sample volume	100 μl to 400 μl	100 μl to 2 000 μl	100 μl to 400 μl	350 μl to 400 μl
Typical sample concentration in volume	0,01 % to 10 % (volume fraction)	0,01 % to 20 % (volume fraction)	0,1 % to 30 %	0,01 % to 1 % (mass fraction)
Spin fluid volume	10 ml to 20 ml	-	10 ml to 40 ml	-
Number of sam- ples	1	Up to 12	1	Up to 14

¹⁾ Disperser DAS is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.