FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 4678

ISO/TC 8/SC 8

Secretariat: KATS

Voting begins on: 2023-10-03

Voting terminates on: 2023-11-28

Ships and marine technology — Noise measurement method for HVAC system in accommodation spaces

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/FDIS 4678</u> https://standards.iteh.ai/catalog/standards/sist/c9a27062-4e36-4285-87acaabc603d3779/iso-fdis-4678

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 4678:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 4678

https://standards.iteh.ai/catalog/standards/sist/c9a27062-4e36-4285-87acaabc603d3779/iso-fdis-4678

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Fore	word	iv
Intro	oduction	v
1	Scope	
2	Normative references	
3	Terms and definitions	1
4	Instrumentation4.1Microphone with sound level meter or other microphone amplifier.4.2Microphone cable4.3Frequency analyser.4.4Nose cone and windshield4.5Sound level recorder or other data sampling devices4.6Calibration of instruments.	2 2 2 3 3 3
5	General requirements	3
6	Measurement procedure 6.1 Outlet noise measurement 6.2 Background noise measurement and outlet noise correction 6.3 Reverberation time measurement 6.4 Result processing 6.4.1 Exhaust outlet noise level 6.4.2 Calculation of the cabin sound absorption 6.4.3 Determination of the vent noise levels 6.5 Measurement uncertainties	3 4 5 5 5 5 6 6
7	 Measurement report 7.1 Measurement company and personnel 7.2 https://www.secondel.org/actions/sist/c9a27062-4e36-4285-87ac- 7.3 HVAC particulars 7.4 Measuring instruments 7.5 Measuring conditions 7.6 Measurement data 	7 7 7 7 8 8 8
Bibli	ography	9

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <u>www.iso.org/patents</u>. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 8, *Ship design*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Heating, ventilation and air conditioning (HVAC) is one of the most serious noise sources, especially for ship accommodation spaces that are far from the machinery spaces. This noise source affects the habitability comfort of crews and passengers on a ship. Although some standards exist for measuring noise on board vessels, for example ISO 2923, no special attention has been paid to measure noise arising from the HVAC. Other standards such as ISO 3740 are more accurate for quantifying measurement of a noise source. However, the methods specified in other standards require more measurement instruments, are more time-consuming than the method presented in this document and are difficult to use in the noise measurement of HVAC system onboard ships, which has many outlets distributed in hundreds of cabins.

This document specifies a method of noise measurement of HVAC systems in ship accommodation spaces by placing three microphones around the vent outlets to reduce airflow interference and space inhomogeneity, and by correcting the noise result by measuring the reverberation time of the cabin. The noise measurement method for the HVAC system is a compromise, which is more precise, but less laborious, compared to the previous methods.

The measurement should be performed for ship accommodation spaces, where noise exceeds the required limits according to existing regulations. The measurement and analysis results could be used to detect the causes of the higher noise level of the HVAC system, further enabling objective measures to be taken to mitigate these causes.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/FDIS 4678</u> https://standards.iteh.ai/catalog/standards/sist/c9a27062-4e36-4285-87acaabc603d3779/iso-fdis-4678

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/FDIS 4678</u> https://standards.iteh.ai/catalog/standards/sist/c9a27062-4e36-4285-87acaabc603d3779/iso-fdis-4678

Ships and marine technology — Noise measurement method for HVAC system in accommodation spaces

1 Scope

This document provides the instrumentation requirements and measurement procedures for measuring noise from HVAC systems in ship accommodation spaces.

Accommodation spaces are defined according to ISO 2923, and include cabins, offices (for carrying out ship's business), hospitals, messrooms and recreation rooms.

Measurement of noise levels in HVAC systems in ship accommodation is performed in the third octave band over the frequency range from 63 Hz to 8 kHz, taking into account the correction of cabin reverberation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 266, Acoustics — Preferred frequencies

ISO 3382-2, Acoustics — Measurement of room acoustic parameters — Part 2: Reverberation time in ordinary rooms

<u>ISO/FDIS 4678</u>

IEC 60942, Electroacoustics — Sound calibrators and status an

IEC 61260-1, Electroacoustics — Octave-band and fractional-octave-band filters — Part 1: Specifications

IEC 61672-1, Electroacoustics — Sound level meters — Part 1: Specifications

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

nose cone

microphone shield designed to substitute the normal protection grid of the microphone and used in high-velocity air flows with low turbulence and little swirl having a streamlined shape with the least possible resistance to airflow and a fine wire mesh around its periphery allowing sound pressure transmission to the microphone diaphragm, whilst a truncated cone behind the mesh reduces the air volume in the form of the diaphragm

Note 1 to entry: See <u>Figure 1</u>.

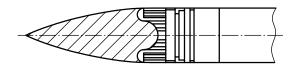


Figure 1 — Schematic diagram of a nose cone

3.2

windshield

device designed for the insertion of the microphone and preamplifier, taking the form of a ball of openpored foam with a cylindrical hole of appropriate diameter and not to affect the directivity of the microphone

Note 1 to entry: A minimum size of the wind shield is suggested to diameter of 60 mm.

Note 2 to entry: See Figure 2.

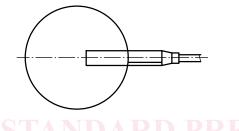


Figure 2 — Schematic diagram of a windshield

3.3

pink noise

random noise signal with a spectral density that decreases by 3 dB per octave, giving constant energy per octave https://standards.iteh.ai/catalog/standards/sist/c9a27062-4e36-4285-87ac-

aabc603d3779/iso-fdis-4678

3.4 white noise

random noise signal having equal intensity at different frequencies, giving it a constant power spectral density

4 Instrumentation

4.1 Microphone with sound level meter or other microphone amplifier

A microphone combined with a sound level meter or other microphone amplifier shall be used, as required by IEC 61672-1 for a Class 1 sound level meter.

4.2 Microphone cable

The microphone cable shall meet the requirement that the sensitivity does not vary with temperature in the main range during the test. Disturbance of the cable, whether due to the traverse of the microphone or airflow across the cable, should not produce noise that interferes with the measurement.

4.3 Frequency analyser

The frequency analyser shall use a one-third-octave-band filter set as required by IEC 61260-1. The filter band centre frequencies shall be in accordance with ISO 266.

4.4 Nose cone and windshield

The use of a nose cone or windshield is desirable to offset the effect of air flow. The influence of nose cone and windshield on the measurement of noise levels shall not be greater than 0,5 dB (A). The combination of the nose cone and windshield with the microphone should be omni-directional.

4.5 Sound level recorder or other data sampling devices

Sound level recorders or other data sampling devices shall comply with the requirements of IEC 61672-1 for Class 1 instruments.

4.6 Calibration of instruments

The instruments shall be calibrated before and after each test by applying a Class 1 acoustic calibrator to the microphone in accordance with IEC 60942. The calibrator shall be calibrated within the interval specified by manufacturer.

5 General requirements

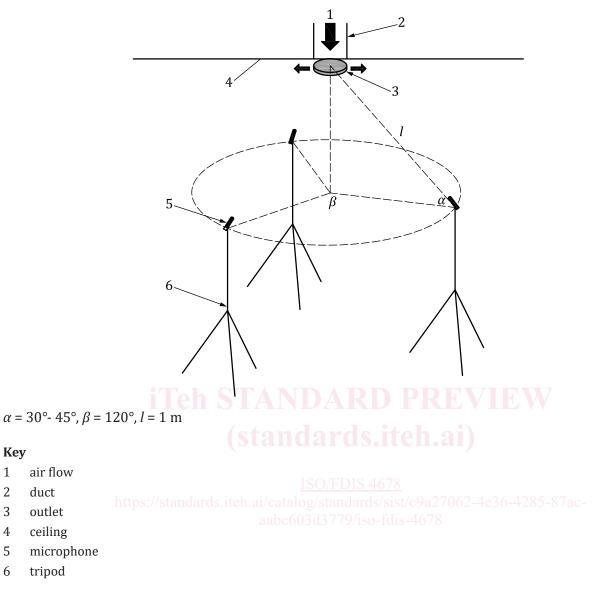
Noise level measurement should be carried out after the completion of the ship construction with all mechanical equipment switched off, unless necessary for running the HVAC system. If possible, the shore power in wharf condition or battery system should be used to avoid the influence of other mechanical equipment, such as diesel generator sets.

The HVAC system shall be in normal operation, its power shall meet the design conditions, and each exhaust outlet shall be adjusted in accordance with the designed flowrate.

Doors and windows should be closed tightly.

Noise generated by external sound sources, such as crew or passenger activities, recreation, construction and maintenance work, should not affect the noise value at the measurement site. If necessary, the measured values can be corrected according to the steady-state background noise.

When measuring the noise level, there should be no person except the measurement operator in the measuring accommodation spaces.


The noise level measurement should be carried out using an integral measurement method, and a stable reading lasting at least 30 s shall be obtained to represent the average value of the changes due to changes in the sound field.

6 Measurement procedure

6.1 Outlet noise measurement

Firstly, check and record the operating status of the measured HVAC system, especially if the individual exhaust outlets have been adjusted according to the designated flow rate. The data of flow rates should be recorded in the measurement report.

In order to reduce the turbulence effect of air flow from the outlets and to lower the measurement error, three microphones with windshields are placed on the tripods and located in one plane at an equal angle interval of β . The distance between each microphone and the edge of the measured exhaust outlet is 1 m. Position angle of the microphone, α , should be between 30° and 45° with inclination to the plane of the ceiling, as shown in Figure 3. For the case of outlets near the corners of the cabin, there is not enough space to place three microphones; one or two microphones of those should be adopted.

Figure 3 — Arrangement of the microphones

If there are more than two exhaust outlets in a large space, each outlet in the space should be measured.

In any case, measurements should not be made when the distance between the microphone and the boundary of the premises is less than 0.5 m.

6.2 Background noise measurement and outlet noise correction

The background noise measurement shall be made before or after the outlet noise measurement, when HVAC system is switched off.

The background noise shall be determined with the equivalent continuous sound pressure level over a period of approximately 30 s. The same microphone positions used for the outlet noise measurement shall be used. Calculate the energetic average of the background noise level in the three positions before correction of the outlet noise level.

Outlet noise correction should be made according to <u>Table 1</u>.