

SLOVENSKI STANDARD oSIST prEN IEC 61788-15:2025

01-april-2025

Superprevodnost - 15. del: Meritve elektronskih karakteristik - Lastna površinska impedanca superprevodnih plasti pri mikrovalovnih frekvencah

Superconductivity - Part 15: Electronic characteristic measurements - Intrinsic surface impedance of superconductor films at microwave frequencies

Supraleitfähigkeit - Teil 15: Messungen der elektronischen Charakteristik -Oberflächenimpedanz von Supraleiterschichten bei Mikrowellenfrequenzen

Supraconductivité - Partie 15: Mesures de caractéristiques électroniques - Impédance de surface intrinsèque de films supraconducteurs aux fréquences micro-ondes

Ta slovenski standard je istoveten z: prEN IEC 61788-15:2025

ICS:

17.220.20	Merjenje električnih in magnetnih veličin	Measurement of electrical and magnetic quantities
29.050	Superprevodnost in prevodni materiali	Superconductivity and conducting materials

oSIST prEN IEC 61788-15:2025 en

OSIST prEN IEC 61788-15:2025

iTeh Standards (https://standards.iteh.ai) Document Preview

DSIST prEN IEC 61788-15:2025

https://standards.iteh.ai/catalog/standards/sist/f3ca3a3b-e814-4139-bf58-4faef7e014e9/osist-pren-iec-61788-15-2025

90/539/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER: IEC 61788-15 ED2 DATE OF CIRCULATION:

CLOSING DATE FOR VOTING: 2025-04-25

SUPERSEDES DOCUMENTS:

2025-01-31

90/523/CD, 90/534/CC

IEC TC 90 : SUPERCONDUCTIVITY	
Secretariat:	SECRETARY:
Japan	Mr Jun Fujikami
OF INTEREST TO THE FOLLOWING COMMITTEES:	HORIZONTAL FUNCTION(S):
Aspects concerned:	
	NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting	lards.iteh.ai)
The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	t Preview
The CENELEC members are invited to vote through the CENELEC online voting system.	<u>61788-15:2025</u> 14-4139-bf58-4faef7e014e9/osist-pren-iec-61788

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

TITLE:

Superconductivity - Part 15: Electronic characteristic measurements - Intrinsic surface impedance of superconductor films at microwave frequencies

PROPOSED STABILITY DATE: 2032

NOTE FROM TC/SC OFFICERS:

Copyright © 2024 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

IEC 61788-15 ED2 © IEC 2024

1	CONTENTS		
2			
3	FOREWORD 5		
4	INTRO	DUCTION	7
5	1 Scope		
6	2 No.	rmative references	8
7	2 NO		
1	3 Ter		0
8	4 Re	quirements	9
9	5 Apj	paratus	9
10	5.1	Measurement equipment	9
11	5.2	Measurement apparatus	
12	5.3	Dielectric rods	
13	5.4	Superconductor films and copper cavity	
14	6 Me	asurement procedure	
15	6.1	Set-up	
16	6.2	Measurement of the reference level	
17	6.3	Measurement of the R_s of oxygen-free high conductivity copper	
18 19	6.4	Determination of the R_{Se} of superconductor films and tan ∂ of standard dielectric rods.	
20	6.5	Determination of the penetration depth	20
21	6.6	Determination of the intrinsic surface impedance	21
22	7 Un	certainty of the test method en Staindards	21
23	7.1	Measurement of unloaded quality factor	21
24	7.2	Measurement of loss tangent	22
25	7.3	Temperature	22
26	7.4	Specimen and holder support structure	23
27	7.5	Uncertainty in the intrinsic surface impedance	23
28	8 Tes	st Report	23
29	8.1	Identification of test specimen	
30	8.2	Report of the Zs values	23
31	8.3	Report of the test conditions	23
32	Annex	A (informative) Additional information relating to clauses 1 to 8	24
33	A.1	Concerning the Scope	24
34	A.2	2 Requirements	25
35	A.3	3 Theory and the measurement procedure for the intrinsic surface impedance	26
36		A.3.1 Theoretical relation between the Z_s and the Z_{se} [14]	26
37		A.3.2 Calculation of the geometrical factors [22]	
38	A.4	Dimensions of the standard sapphire rod	
39	A.5	Dimensions of the closed type resonators	
40	A.t	I est results for type A and type B sappnire resonators	
41	выюд	гарпу	
42			
43 44	Figure HTS fili	1 – Schematic diagram for the measurement equipment for the intrinsic $Z_{\rm S}$ of ms at cryogenic temperatures	11
45 46	Figure connec	2 – Schematic diagram of a dielectric resonator with a switch for thermal	11
47	Figure	3 – Typical dielectric resonator with a movable top plate	12
48	Figure	4 – Switch block for thermal connection	13
49	Figure	5 – Dielectric resonator assembled with a switch block for thermal connection.	14

90/539/CDV

50 51	Figure 6 – A typical resonance peak. Insertion attenuation <i>IA</i> , resonant frequency f_0 and half power bandwidth Δf_{3dB} are defined	17
52	Figure 7 – Reflection scattering parameters S_{11} and S_{22}	18
53	Figure 8 – Definitions for terms in Table 5	22
54	Figure A.1 - Schematic diagram for the measurement system	24
55	Figure A.2 – A motion stage using step motors	25
56	Figure A.3 – Cross-sectional view of a dielectric resonator	26
57	Figure A.4 – A diagram for simplified cross-sectional view of a dielectric resonator	30
58	Figure A.5 – Mode chart for type A sapphire resonator with a cavity diameter of 12 mm	33
59	Figure A.6 – Frequency response of type A sapphire resonator	34
60 61	Figure A.7 – Q_U versus temperature for the TE ₀₂₁ and the TE ₀₁₂ modes of type A sapphire resonator with 360 nm-thick YBCO films	34
62 63	Figure A.8 – The resonant frequency f_0 versus temperature for the TE_{021} and TE_{012} modes of type A sapphire resonator with 360 nm-thick YBCO films	35
64 65	Figure A.9 – The temperature dependence of the R_{Se} of YBCO films with the thicknesses of 70 nm to 360 nm measured at ~40 GHz	35
66 67	Figure A.10 – The temperature dependence of $\Delta \lambda_e$ for the YBCO films with the thicknesses of 70 nm and 360 nm measured at ~40 GHz	36
68 69 70	Figure A.11 – The penetration depths λ of the 360 nm-thick YBCO film measured at 10 kHz using the mutual inductance method and at ~40 GHz using type A sapphire resonator	36
71 72	Figure A.12 – The temperature dependence of the R_s of YBCO films with the thicknesses of 70 nm to 360 nm measured at ~40 GHz	37
73	Figure A.14 – Frequency response of type B sapphire resonator	39
74 75	Figure A.15 – The temperature dependence of the R_{se} for the 300 nm-thick YBCO films measured at ~38 GHz Inset-The tan δ of the sapphire rod used for the measurements	39
76 77 78	Figure A.16 – The temperature dependence of $\Delta \lambda_e$ for the 300 nm-thick YBCO film measured at ~38 GHz Inset-The penetration depths λ of the 300 nm-thick YBCO film measured at ~38 GHz using type B sapphire resonator	40
s 79 tar 80	Figure A.17 – The $\sigma_2 vs.$ temperature data for the 300 nm-thick YBCO films measured at ~38 GHz Inset-The $\sigma_1 vs.$ temperature data for the same YBCO films at ~38 GHz	-61788-15-202 40
81 82 83	Figure A.18 – The R_s vs. temperature data for the 300 nm-thick YBCO films measured at ~38 GHz Inset- The X_s for the same YBCO films at ~38 GHz	40
84	Table 1 – Typical dimensions of a sapphire rod	15
85	Table 2 – Typical dimensions of OFHC cavities and HTS films	15
86	Table 3 – Geometrical factors and filling factors calculated for the standard sapphire	
87	resonators	18
88	Table 4 – Specifications of Vector Network Analyzer	22
89	Table 5 – Type B uncertainty for the specifications on the sapphire rod	22

90

92	INTERNATIONAL ELECTROTECHNICAL COMMISSION
93	
94	
95	SUPERCONDUCTIVITY –
96	
97	Part 15: Electronic characteristic measurements –
98	Intrinsic surface impedance of superconductor films at microwave
99	frequencies
100	
101	
102	FOREWORD
103 104 105 106 107 108 109 110	1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
111 112 113	2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
114 115 116 117	3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
118 119 120	4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
121 122 123	 IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
124	6) All users should ensure that they have the latest edition of this publication.
125 126 127 128	7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
129 130	 Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
131 132 133 134 135 136	9) IEC draws attention is drawn to the possibility that the implementation of the document may involve the use of a patent. IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of a patent, which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at http://patents.iec.ch and/or www.iso.org/patents. IEC shall not be held responsible for identifying any or all such patent rights.
137 138	International Standard IEC 61788-15 has been prepared by IEC technical committee 90: Superconductivity.
139 140	This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision.
141 142	This edition includes the following significant technical changes with respect to the previous
143	
144 145	 a) linformative Annex B, combined relative standard uncertainty in the intrinsic surface impedance is added;
146	b) The terms, 'precision and accuracy', are replaced with uncertainty;
147	c) Results from a round robin test are added.
148	,
149	The text of this standard is based on the following documents:
0	EDIS Report on voting

		90/XXX/FDIS	90/XXX/RVD	
150				
151 152	Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.			
153	The language used for the development of this international standard is English.			
154 155 156	This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs . The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications .			
157 158 159	The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific document. At this date, the publication will be			
160	 reconfirmed, 			
161	 withdrawn, 			
162	 replaced by a revised edition 	tion, or		
163	• amended.			
164				
165				

iTeh Standards (https://standards.iteh.ai) Document Preview

SIST prEN IEC 61788-15:2025

https://standards.iteh.ai/catalog/standards/sist/f3ca3a3b-e814-4139-bf58-4faef7e014e9/osist-pren-iec-61788-15-2025

IEC 61788-15 ED2 © IEC 2024

166

INTRODUCTION

Since the discovery of high T_c superconductors (HTS), extensive researches have been performed worldwide on electronic applications and large-scale applications with HTS filter subsystems based on YBa₂Cu₃O_{7- δ} (YBCO) having already been commercialized [1].

170 Merits of using HTS films for microwave devices such as resonators, filters, antennas, delay 171 lines, etc., include i) microwave losses from HTS films could be extremely low and ii) no signal 172 dispersion on transmission lines made of HTS films due to extremely low intrinsic surface 173 resistance (R_s) [2] and frequency-independent penetration depth (λ) of HTS films, respectively.

174 In this regard, when it comes to designing of HTS-based microwave devices, it is important to 175 measure the intrinsic surface impedance (Z_S) of HTS films with $Z_S = R_S + jX_S$ and $X_S = \omega \mu_0 \lambda$ 176 (Here ω and μ_0 denote the angular frequency and the permeability of vacuum, respectively, 177 X_S , the intrinsic surface reactance, and $X_S = \omega \mu_0 \lambda$ is valid at temperatures not too close to 178 the critical temperature T_C of HTS films).

179 Various reports have been made on measuring the $R_{\rm S}$ of HTS films at microwave frequencies 180 with the typical $R_{\rm S}$ of HTS films as low as 1/100 - 1/50 of that of oxygen-free high-purity copper 181 (OFHC) at 77 K and 10 GHz. The $R_{\rm S}$ of conventional superconductors such as niobium (Nb) 182 could be easily measured by using Nb cavities by converting the resonator quality factor (Q) to the $R_{\rm S}$ of Nb. However, such conventional measurement method could no longer be applied to 183 184 HTS films grown on dielectric substrates, with which it is basically impossible to make all-HTS 185 cavities. Instead, for measuring the $R_{\rm S}$ of HTS films, several other methods have been useful, which include microstrip resonator method [3], coplanar microstrip resonator method [4], 186 parallel plate resonator method [5] and dielectric resonator method [7-11]. Among the stated 187 188 methods, the dielectric resonator method has been very useful due to the fact that the method 189 enables to measure the microwave surface resistance in a non-invasive way and with accuracy. 190 In 2002, International Electrotechnical Commission (IEC) published the dielectric resonator 191 method as a measurement standard [12].

192 The test method given in this standard enables to measure not only the R_s but also the X_s of

HTS films regardless of the film's thickness by using single sapphire resonator, which differs
 from the existing IEC standard (IEC 61788-7:2020) that is limited to measure the surface

195 resistance of superconductor films having the thicknesses of more than 3λ at the measured 195 temperature by using two sapphire resonators. In fact, the measured surface resistances of 8-15-2025 197 HTS films with different thicknesses of less than 3λ mean effective values instead of intrinsic 198 values, which cannot be used for directly comparing the microwave properties of HTS films 199 among one another [13, 14]. Use of single sapphire resonator as suggested in this standard 200 also enables to reduce uncertainty in the measured surface resistance that might result from 201 using two sapphire resonators with sapphire rods of different quality.

The test method given in this standard can also be applied to HTS coated conductors, HTS bulks and other superconductors having established models for the penetration depth.

This standard is intended to provide an appropriate and agreeable technical base for the time being to engineers working in the fields of electronics and superconductivity technology.

The test method covered in this standard has been discussed at the VAMAS (Versailles Project on Advanced Materials and Standards) TWA-16 meeting.

208

209

210

SUPERCONDUCTIVITY -

212

213 214

Part 15: Electronic characteristic measurements – Intrinsic surface impedance of superconductor films at microwave frequencies

215 216

217 1 Scope

218 This part of IEC 61788 describes measurements of the intrinsic surface impedance (Z_S) of HTS 219 films at microwave frequencies by a modified two-resonance mode dielectric resonator method 220 [14, 15]. The object of measurement is to obtain the temperature dependence of the intrinsic 221 surface impedance, Z_S , at the resonant frequency f_0 .

- 222 The frequency and thickness range and the measurement resolution for the $Z_{\rm S}$ of HTS films are 223 as follows:
- 224 frequency: Up to 40 GHz; _
- 225 film thickness: Greater than 50 nm; _
- 226 measurement resolution: 0,01 m Ω at 10 GHz.

227 The Z_s data at the measured frequency, and that scaled to 10 GHz, assuming the f^2 rule for the 228 intrinsic surface resistance, $R_{\rm S}$ (f < 40 GHz), and the f rule for the intrinsic surface reactance, 229 $X_{\rm S}$, for comparison, shall be reported.

Normative references 230 2

The following referenced documents are indispensable for the application of this document. For 231 dated references, only the edition cited applies. For undated references, the latest edition of 232 233 the referenced document (including any amendments) applies.

IEC 60050-815:2000, International Electrotechnical Vocabulary – Part 815: Superconductivity 234

235 IEC 61788-15:2011, Superconductivity – Part 15: Electronic characteristic measurements – Intrinsic surface impedance of superconductor films at microwave frequencies st-pren-lec-61788-15-2025 236

237 IEC 61788-7:2020, Superconductivity – Part 7: Electronic characteristic measurements – 238 Surface resistance of high-temperature superconductors at microwave frequencies

239 Terms and definitions 3

240 For the purposes of this standard, the definitions given in IEC 60050-815 apply.

- 241 3.1
- 242 Surface impedance
- 243 (see IEC 60050-815:2000, 815-04-62)
- 244 3.2

245 Intrinsic surface impedance

246 In general, for conductors (or superconductors) having the thicknesses sufficiently greater than 247 the skin depth (or the penetration depth) of electromagnetic fields, Zs is defined as the ratio of 248 the tangential component of the electric field (E_t) and that of the magnetic field (H_t) at a 249 conductor or a superconductor surface:

250
$$Z_{\rm S} = E_{\rm t}/H_{\rm t} = R_{\rm S} + jX_{\rm S}.$$
 (1)

Here $R_{\rm S}$ denotes the intrinsic surface resistance and $X_{\rm S}$ is the intrinsic surface reactance if the 251 thickness of the conductor (or the superconductor) under test is sufficiently greater than the 252 253

penetration depth of electromagnetic fields. In this case, $Z_{\rm S}$ is expressed by

254

$$Z_{\rm S} = \left(\frac{\mu}{\varepsilon}\right)^{1/2} = \left(\frac{j\mu_0\omega}{\sigma}\right)^{1/2} \tag{2}$$

with ε and μ denoting the permittivity and the permeability of the conductor (or the superconductor) under test, respectively, μ_0 , the permeability of vacuum, σ (= $\sigma_1 - j\sigma_2$), the conductivity of the conductor (or the superconductor), and ω , the measured angular frequency. σ is real for normal conductors with $\sigma_2 = 0$ and complex for superconductors in the superconducting state¹.

260 **3.3**

261 Effective surface impedance

262 If the thickness of the conductor (or the superconductor) under test is not sufficiently greater 263 than the penetration depth of electromagnetic fields, Z_s as defined by Equation (1) in 3.2 264 becomes significantly different from that defined by Equation (2) in 3.2. In this case, Z_s as 265 defined by Equation (1) becomes the effective surface impedance, Z_{se} , with

266
$$Z_{Se} = E_t/H_t = R_{Se} + jX_{Se}.$$
 (3)

Here R_{Se} denotes the effective surface resistance and X_{Se} is the effective surface reactance.

268 4 Requirements

The Z_s of HTS films shall be measured by applying a microwave signal to a dielectric resonator with the superconductor specimen and then measuring the attenuation of the resonator at each frequency. The frequency shall be swept around the resonant frequency as the centre, and the attenuation - frequency characteristics as well as the scattering parameters shall be recorded to obtain the *Q*-value, which corresponds to the loss.

The target relative uncertainty of this method is less than 20 % at temperatures of 30 K to 60 K.

276 It is the responsibility of the user of this standard to consult and establish safety and health 277 practices and to determine the applicability of regulatory limitations prior to use.

SIST prEN IEC 61788-15:2025

Hazards exist in this type of measurement. The use of a cryogenic system is essential to cool
the superconductors to allow transition into the superconducting state. Direct contact of skin
with cold apparatus components can cause immediate freezing, as can direct contact with a
spilled cryogen. The use of an r.f.-generator is also essential to measure high-frequency
properties of materials. If its power is too high, direct exposure to human bodies can cause an
immediate burn.

284 5 Apparatus

285 5.1 Measurement equipment

Figure 1 shows a schematic diagram of the equipment required for the microwave measurement. The equipment consists of a network analyzer system for transmission measurements, a measurement apparatus, and thermometers for monitoring the temperature of HTS films under test.

An incident power generated from a suitable microwave source such as a synthesized sweeper is applied to the dielectric resonator fixed in the measurement apparatus. The transmission

characteristics are shown on the display of the network analyzer.

 $¹_{\sigma_2}$ is a parameter associated with the appearance of Cooper pairs in superconductors at temperatures below the critical temperature.

The measurement apparatus is fixed in a temperature-controlled cryocooler. For the penetration depth measurements, vibrations from the cryocooler should be dampened by using dampers between the vacuum chamber and the cryocooler.

For measuring the Z_s of HTS films, a vector network analyzer is recommended because it has better measurement accuracy than a scalar network analyzer due to its wider dynamic range.

298 5.2 Measurement apparatus

Figure 2 shows a schematic diagram of a typical measurement apparatus for the Z_s of HTS films deposited on a substrate with a flat surface. The lower HTS film is pressed down by a spring, which is made of beryllium copper. Use of a plate type spring is recommended for the improvement of measurement uncertainty. This type of spring reduces the friction between the spring and the other part of the apparatus and enables smooth motion of HTS films in the course of thermal expansion/contraction of the dielectric-loaded cavity. The upper HTS film is glued to the Cu plate at the top using adhesives with good thermal conductivity.

306 The R_{se} is measured with the upper HTS film being in contact with the top of the Cu cavity. 307 During measurements of the R_{Se} , the whole resonator is first cooled down to the lowest 308 temperature with the cryocooler turned on and then warmed up to higher temperatures with the 309 cryocooler turned off. Meanwhile, the X_{Se} is measured with a small gap between the upper HTS 310 film and the top of the Cu cavity. The gap distance shall be set to a value predetermined at the 311 room temperature by using either a micrometer or a step motor connected to the upper 312 superconductor film through a Teflon rod. The real gap distances would be a little longer at 313 cryogenic temperatures than the corresponding predetermined ones due to thermal contraction 314 of the Teflon rod. The gap distance should be small enough not to cause significant radiation 315 loss and large enough to enable control of the temperature of the upper superconductor film. More detailed descriptions on a dielectric resonator with a movable top plate, a switch block for 316 317 thermal connection, and the dielectric resonator assembled with the switch block are given in 318 Figures 3 to 5, respectively. Procedures for controlling the temperature of the upper HTS film 319 for measurements of the X_s are described in 6.6.

320 Each of the two semi-rigid cables shall have a small loop at the end as shown in Figure 3. The loop, 321 shaped like a semicircle, is affixed to the cross-sectional part of the outer conductor via soldering 322 at its terminal point. The plane of the loop shall be set parallel to that of the HTS films in order to 323 suppress the unwanted TMmn0 modes. The coupling loops shall be carefully checked prior to the 324 measurements to keep the good coupling conditions. For measuring the Q values as a function of 8-15-2025 325 temperature, these cables can be moved to the right or to the left to maintain the insertion attenuation (IA) slightly higher than 20 dB at the lowest temperature, with the vertical position of 326 327 each loop fixed in the middle of the sapphire rod. The distance between the loop and the sapphire rod should be adjusted to a smaller value if the resonant signal gets too noisy at higher temperatures. 328 329 In this adjustment, coupling of unwanted cavity modes to the interested dielectric resonance mode 330 shall be suppressed. Unwanted, parasitic coupling to the other modes not only reduces the high-Q 331 value of the TE mode resonator but also increases uncertainty in the measured resonant frequency 332 of the TE mode resonator, making it difficult to measure changes in the resonant frequency vs. 333 temperature data with accuracy. For collecting the temperature dependence of the resonant frequency data, the distance between the loop and the sapphire rod should not be changed during 334 335 measurements. In this case, IA at the lowest temperature can be lower than 20 dB.

For suppressing the parasitic coupling, dielectric resonators shall be designed in such a way that the frequencies of the resonance modes of interest are well separated from those of nearby parasitic modes. The dielectric rod should be fixed at the center of the bottom superconductor film by using low-loss glue. It is noted that effects of glue on the measured *Q*-value should be negligible.

341

Figure 1 – Schematic diagram for the measurement equipment for the intrinsic Z_s of
 HTS films at cryogenic temperatures

Cryostat

https://standards.iteh.ai/catalog/standards/sist/f3ca3a3b-e814-4139-bf58-4faef7e014e9/osist-pren-iec-61788-15-2025

- 345 Key
- 346 1 Teflon rod
- 347 2 Cu plate
- 348 3 superconductor (or metal) film
- 349 4 Cu wire
- 350 5 switch for thermal connection
- 351 6 Cu plate
- 352 7 superconductor (or metal) film
- 353 8 Be-Cu spring
- 354 9 cold finger
- 355 10 Cu cavity
- 356 11 dielectric rod
- 357 12 temperature sensor
- 358 359

Figure 2 – Schematic diagram of a dielectric resonator with a switch for thermal connection

90/539/CDV

361

SIST prEN IEC 61788-15:2025

http362 tan Key's.iteh.ai/catalog/standards/sist/f3ca3a3b-e814-4139-bf58-4faef7e014e9/osist-pren-iec-61788-15-2025

1 acryl plate	6 dielectric rod	11 screw
2 z-axis stage	7 superconductor film	12 superconductor film
3 teflon screw	8 Cu plate	13 Cu plate
4 connector	9 Be-Cu spring	14 semi-rigid coaxial cable
5 screw	10 Cu plate	

363

Figure 3 – Typical dielectric resonator with a movable top plate

364

365

366

367

369

oSIST prEN IEC 61788-15:2025

http370 tan Keys.iteh.ai/catalog/standards/sist/f3ca3a3b-e814-4139-bf58-4faef7e014e9/osist-pren-iec-61788-15-2025

37	71	1 stainless steel rod	
37	72	2 micrometer	
37	73	3 Cu block	
37	74	4 sliding guide	
37	75	5 Teflon plate	
37	76		Figure 4 – Switch block for thermal connection
37	77		
37	78		
37	79		
38	30		