NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information

Designation: E2180 - 07 (Reapproved 2012)

Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials¹

This standard is issued under the fixed designation E2180; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Polymeric materials such as vinyl pool liners, shower curtains, and various medical devices are treated frequently with incorporated or bound antimicrobial agents. Practices G21 is used to determine the ability of polymer materials to resist microbial attack or staining (see also Practice E1428); however, none of the methods permit quantitative evaluations of incorporated antimicrobial activity.² These antimicrobials typically require contact with the microbial cell for maximal activity. When aqueous based bacterial inoculum suspensions are applied onto a preservative-treated plastic or other hydrophobic material, the surface tension of the polymer often causes the inocula suspension to dome. Bacteria within the drops of inoculum may not contact the treated surface if the challenged surface does not dry, or upon drying, cells may become layered. This test standard involves an agar slurry inoculum vehicle that provides a relatively uniform contact of the inocula with antimicrobial-treated hydrophobic surfaces.

Teh Standards

1. Scope

1.1 This test method is designed to evaluate (quantitatively) the antimicrobial effectiveness of agents incorporated or bound into or onto mainly flat (two dimensional) hydrophobic or polymeric surfaces. The method focuses primarily on assessing antibacterial activity; however, other microorganisms such as yeast and fungal conidia may be tested using this method.

1.2 The vehicle for the inoculum is an agar slurry which reduces the surface tension of the saline inoculum carrier and allows formation of a "pseudo-biofilm," providing more even contact of the inoculum with the test surface.

Note 1—This test method facilitates the testing of hydrophobic surfaces by utilizing cells held in an agar slurry matrix. This test method, as written, is inappropriate to determine efficacy against biofilm cells, which are different both genetically and metabolically than planktonic cells used in this test.

1.3 This method can confirm the presence of antimicrobial activity in plastics or hydrophobic surfaces and allows determination of quantitative differences in antimicrobial activity

between untreated plastics or polymers and those with bound or incorporated low water-soluble antimicrobial agents. Comparisons between the numbers of survivors on preservativetreated and control hydrophobic surfaces may also be made.

1.4 The procedure also permits determination of "shelf-life" or long term durability of an antimicrobial treatment which may be achieved through testing both non-washed and washed samples over a time span.

1.5 Knowledge of microbiological techniques is required for these procedures.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:³

E1054 Test Methods for Evaluation of Inactivators of Antimicrobial Agents

¹This test method is under the jurisdiction of ASTM Committee E35 on Pesticides, Antimicrobials, and Alternative Control Agents and is the direct responsibility of Subcommittee E35.15 on Antimicrobial Agents.

Current edition approved April 1, 2012. Published June 2012. Originally approved in 2001. Last previous edition approved in 2007 as E2180 – 07. DOI: 10.1520/E2180-07R12.

² Price, D. L., Sawant, A. D., and Ahearn, D. G., "Assessment of the antimicrobial activity of an insoluble quaternary amine complex in plastics," *J. Industr. Microbiol*, Vol 8, No. 2, 1991, pp. 83–89.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

🖽 E2180 – 07 (2012)

- E1428 Test Method for Evaluating the Performance of Antimicrobials in or on Polymeric Solids Against Staining by *Streptoverticillium reticulum* (A Pink Stain Organism)
- G21 Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi

3. Terminology

3.1 Definitions:

3.1.1 *agar slurry, n*—a semi-gelatinous liquid formed when 3 g/L agar-agar is added to a 0.85 % saline solution.

3.1.2 *inoculum vehicle*, *n*—the carrier solution used to transport bacterial cells to a test surface. Samples include saline, nutrient broth, tryptic soy broth, agar slurry, or other buffers that maintain bacterial viability.

3.1.3 *neutralizing recovery broth, n*—liquid growth media used to inactivate the effects of the test antimicrobial agent.

4. Summary of Test Method

4.1 This method involves inoculation of a molten (45°C) agar slurry with a standardized culture of bacterial cells.

4.2 A thin layer of the inoculated agar slurry (0.5-1.0 mL) is pipetted onto the test and untreated control material (triplicate samples minimum).

4.3 After the specified contact time (24 h commonly used), surviving microorganisms are recovered via elution of the agar slurry inoculum from the test substrate into neutralizing broth and extracted via methods that provide complete removal of the inoculum from the test article (examples include sonication, vortexing, and/or manual extraction, that is, stomacher).

4.4 Serial dilutions are made, then pour or spread plates are made of each dilution. Agar plates and dilution broths are incubated for 48 ± 2 h at a specified temperature dependent upon the optimal temperature for test organism.

4.5 Bacterial colonies from each dilution series are counted and recorded.

4.6 Calculation of percent reduction of bacteria from treated versus untreated samples is made.

5. Significance and Use

5.1 This method can be used to evaluate effectiveness of incorporated/bound antimicrobials in hydrophobic materials such as plastics, epoxy resins, as well as other hard surfaces.

5.2 The aqueous based bacterial inoculum remains in close, uniform contact in a "pseudo-biofilm" state with the treated material. The percent reduction in the surviving populations of challenge bacterial cells at 24 h versus those recovered from a non-treated control is determined.

5.3 The hydrophobic substrate may be repeatedly tested over time for assessment of persistent antimicrobial activity.

6. Apparatus

- 6.1 Erlenmeyer Flask, 250 mL.
- 6.2 Petri Dishes, (15 × 100 mm), sterile.
- 6.3 Colony Counter.

6.4 *Specimen Cups*, (120 mL), sterile or equivalent sterile equipment for extraction.

- 6.5 Pipetters, (1000 µL) positive displacement.
- 6.6 Pipette Tips, sterile.
- 6.7 Test Tubes, 16×100 mm.
- 6.8 *Incubator*, set at required temperature (25-35 \pm 2°C).
- 6.9 Autoclave.
- 6.10 *Water Bath*, capable of maintaining water at $45 \pm 2^{\circ}$ C.
- 6.11 Sterile Cotton Swabs.
- 6.12 Sonic Bath, 47 Khz, cleaning non-cavitating.
- 6.13 Vortex Mixer.
- 6.14 pH Meter.
- 6.15 Hot Plate, with stirrer.
- 6.16 Spectrophotometer, set at 600 nm.
- 6.17 Sterile Cuvettes.
- 6.18 Test Materials, sterile if specified by interested parties.
- 6.19 Cell Counting Chamber.

7. Reagents

- 7.1 Media:
- 7.1.1 *Tryptic Soy Broth*, or appropriate broth.
- 7.1.2 *Tryptic Soy Agar*, or appropriate agar.
- 7.1.3 *Neutralizing Broth*, appropriate for the antimicrobial compound tested.(See Practice E1054.)
 - 7.1.4 Agar-agar.
 - 7.1.5 NaCl.
 - 7.1.6 Sterile Deionized Water.

7.1.7 Sterile 0.85 % Saline Dilution Blanks, 9.0 mL in 16×100 mm test tubes or appropriate dilution buffer (such as phosphate buffer or Butterfield's buffer).

7.2 *Test Organisms*—Specific organisms are recommended but choice of organism should be relevant to the environment in which the product will perform.

7.2.1 Gram-positive bacteria *Staphylococcus aureus* ATCC 6538.

7.2.2 Gram-negative bacteria *Pseudomonas aeruginosa* ATCC 15442 or *Klebsiella pneumoniae* ATCC 4352.

7.2.3 Other microorganisms such as yeast or fungal conidia may also be tested using this procedure. Exposure periods may be modified (up to 96 h) to address more resistant microorganisms.

8. Procedure

8.1 Grow 18 h bacterial cultures (three transfers) at a specified temperature dependent upon the optimal temperature for the test organism in tryptic soy or appropriate broth. These cultures should originate from 18-24 h growth coming from stock culture plates or growth on agar slants.

8.2 Prepare the agar slurry by dissolving 0.85 g NaCl and 0.3 g agar-agar in 100 mL of deionized water. Heat with stirring on a hot plate until the agar dissolves. One agar slurry should be prepared for each organism tested.