INTERNATIONAL STANDARD

ISO 5110

First edition 2023-08

Test method for flight stability of a multi-copter unmanned aircraft system (UAS) under wind and rain conditions

Méthode d'essai relative à la stabilité en vol d'un multicoptère télépiloté dans des conditions de vent et de pluie

(standards.iteh.ai)

<u>ISO 5110:2023</u> https://standards.iteh.ai/catalog/standards/sist/e2578bb9-8977-4adb-a03a-f277cca91f64/iso-5110-2023

Reference number ISO 5110:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5110:2023

https://standards.iteh.ai/catalog/standards/sist/e2578bb9-8977-4adb-a03a-f277cca91f64/iso-5110-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: <u>www.iso.org</u>

Published in Switzerland

Contents

Page

Forew	rewordiv							
Introd	luctio	1		v				
1	Scope	9		1				
2	Norm	ative r	eferences					
3	Term	s and d	efinitions					
4	General principles							
	4.1 4.2 4.3 4.4	Test p Test co Test aj Test m 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7	urpose ondition pparatus tethod General Take-off and landing stability test under wind Take-off and landing stability test under wind and rainfall Six-directional flight stability test under wind Six-directional flight stability test under wind and rainfall Flight stability test under wind during a 360° rotational flight Flight stability test under wind and rainfall flight Flight stability test under wind and rainfall during a 360° rotational flight urement system	2 2 3 3 5 5 5 5 5 5 5 5 5 5				
5	Test	process						
-	5.1 5.2	Prepa	ratory procedure rocedure	6 6 6 6 7 8 9				
6	Exam	ination	and evaluation	9				
Annex	A (inf	ormativ	re) Examples of the multi-copter UAS flight stability test					
Annex	B (in stabi)	nformat l ity test	ive) Example of the report format for the multi-copter UAS flight	18				
Biblio	graph	y		20				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <u>www.iso.org/patents</u>. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 16, *Unmanned aircraft systems*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Multi-copter unmanned aircraft (UA) find a wide variety of applications ranging from individual hobbies, such as image capture and racing, to a rapidly increasing number of commercial purposes, such as precision farming, delivery, and inspection. Multi-copter UA control and flight dynamics are unique relative to those of well-known fixed and rotary wing configurations, and therefore must be fully understood to ensure their safe usage and integration into commercial applications. This document identifies a manner of determining system level flight stability by evaluating the multi-copter UA's automated control system capability to maintain its spatial position when faced with a variety of simulated temperature, wind, gust, rainfall and ice conditions. The test method for the flight stability of the multi-copter unmanned aircraft system (UAS) provides the test condition, procedure, report format, etc. The principal advantage of the test method is its ability to evaluate the flight stability of a multi-copter UAS considering actual flight conditions. All tests are performed considering real-time flight status. The purpose of the test method is to evaluate and improve the flight stability of a multi-copter UAS through experiments conducted under various environmental conditions.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5110:2023</u>

https://standards.iteh.ai/catalog/standards/sist/e2578bb9-8977-4adb-a03a-f277cca91f64/iso-5110-2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5110:2023</u> https://standards.iteh.ai/catalog/standards/sist/e2578bb9-8977-4adb-a03a-f277cca91f64

Test method for flight stability of a multi-copter unmanned aircraft system (UAS) under wind and rain conditions

1 Scope

This document specifies the procedures for testing flight stability of a multi-copter unmanned aircraft system (UAS) and is applicable to multi-copter type UAS that can take-off and land vertically. A commercial multi-copter UAS weighing over 250 g to less than 150 kg is discussed in this document. Further, this document is applicable to military and civilian multi-copter UAS. However, quantitatively specific stability criteria for the test are not specified in this document.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

SO 5110:2023

3.1 Instruction of the second standards of the secon

ability to maintain the parameters of motion (linear and angular positions, speed) within predefined tolerances and time when exposed to external disturbances

Note 1 to entry: Flight stability of a multi-copter UAS can be defined as its spatial precision of take-off, landing, hovering and moving intended by a pilot or autopilot flight program used while being subjected to various flight environments.

3.2

manual mode

mode in which an aircraft flies with complete autopilot stabilization of three axes of motion (pitch, roll, and yaw), heading hold (via a compass), height hold (via barometric pressure sensor), and lateral position hold (via GNSS or optically)

Note 1 to entry: The pilot commands the aircraft to move to a different height or lateral position as required. Once the pilot control input is released, autopilot stabilizes the UA.

3.3

autopilot mode

mode in which an aircraft moves according to pre-programmed waypoints (vertically or horizontally) and/or performs take-off or landing operations without any pilot input

Note 1 to entry: Flight control for the entire duration or for some parts of the flight is performed without a pilot.

4 General principles

4.1 Test purpose

The purpose of this test method is to measure the flight stability of a multi-copter UAS under given operational conditions. To check the overall performance of each component of the multi-copter UAS, such as propulsion, control, and battery management systems, an actual test flight of the multi-copter UAS in a test device is performed. For flight stability evaluations of the multi-copter UAS, actual flight conditions are considered, while all tests are performed inflight. The proposed stability test method and device are expected to satisfy numerous commercial multi-copter UAS manufacturers and developers by evaluating and improving the flight stability of their multi-copter UASs via experimental results.

4.2 Test condition

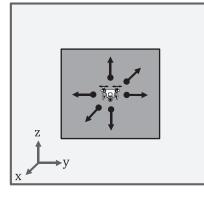
Flight stability measurements of a multi-copter UAS are performed in a test device especially designed for simulating flight conditions and measuring real-time spatial position of a multi-copter UA. In the test device, the multi-copter UA is capable of flying under several environmental conditions, such as temperature (from -20 °C to 50 °C), wind speed (from 0 m/s to 30 m/s), rain fall (from 0 mm/h to 20 mm/h, from 0 °C to 50 °C), ice (from -20 °C to 0 °C) and gust. Testing relative to rainfall does not assess the ingress protection (water) of the multi-copter UAS. Particularly, position data of the multi-copter UA during the stability test are stored to evaluate flight stability. The test conditions are adjusted depending on the purpose and operation condition of the multi-copter UAS because not every multi-copter UA test requires a high cost test device or a long test period. Based on the instructions of the manufacturer, battery safety care and storage should also be considered. For instance, battery should be kept in warm conditions (0 °C at least) before conducting the test to ensure its proper functioning. The test should be performed considering the flight conditions according to the various payloads attached to the multi-copter UA.

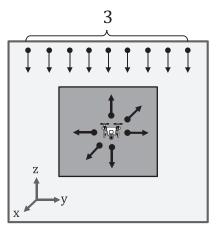
4.3 Test apparatus

ISO 5110:2023

The test apparatus consists of devices capable of generating wind, gust, rain and measuring the position of multi-copter UA during flight stability test. If the test apparatus satisfies the required experimental conditions, it can be installed indoors or outdoors, but the environment should be free from electromagnetic interference. To secure stable global positioning system (GPS) signal strength, the roof and side walls of the test apparatus are built of a material with good GPS signal transmittance. A laminar (or turbulent) wind generator is used to maintain constant wind speed and quality to reproduce a natural environment during the flight stability test. The test section volume (width × height × depth) is determined by the size (diagonal length from rotor to rotor) of the multi-copter UA. A rainfall device using specified equipment, such as multiple nozzles, is used to spray water. The wind gust test should be performed using various controllable wind gust generation methods, such as an oscillating vane gust generator.^[1] The wind speed difference for gust should be adjustable through the gust generating device according to the wind speed of the test condition in progress. A threedimensional position measuring device is used to measure the real-time position of the multi-copter UA using various measuring instruments (motion capture camera, IR camera, video camera, ultra-sonic sensor, UWB, etc). When video-recording-based measurement systems are considered, grid markers should be included on the walls and floor of the test apparatus. The example general specifications of the test device are presented in Table 1. The wind nozzle size should be such that the target air velocity can be set according to the size of the multi-copter UA and test area. Generally, the wind nozzle size should be at least 1,5 times larger than of the multi-copter UA.


Table 1 — The example specification of test device for commercial multi-copter UAS (250 g to
25 kg)


Item	Contents	
Wind nozzle size	4 m × 4 m	
Wind speed	0 m/s to 30 m/s	
Wind gust generation method	Oscillating vane gust generator	
Test section size	$8 \text{ m} \times 8 \text{ m} \times 12 \text{ m} (w \times h \times d)$	
Rainfall simulation system	20 mm/h (max.)	
Measuring system for 3-dimensional position of multi-copter UA	centimetre grade error	


4.4 Test method

4.4.1 General

The flight stability test evaluation method consists of six cases as specified in <u>4.4.2</u> to <u>4.4.7</u>. In the first test case, take-off and landing spatial precision measurements are performed under the specified wind speed within predefined sampling time. In the second test case, rainfall conditions are added to the first test case before evaluation. For in-flight stability measurements under the specified wind speed within the predefined sampling time, the third test case is used. The fourth test case is used to measure the flight stability with added rainfall conditions to the third test case. In the fifth test case, 360° rotational flight precision measurements are performed under the specified wind speed within predefined sampling time. In the sixth test case, rainfall conditions are added to the fifth test case before evaluation. The flight stability for take-off and landing is performed while adjusting the wind speed, gust condition (wind speed difference), rainfall amount and measuring the flight path deviation. The flight stability for the spatial motion for six directions (up, down, left, right, forward, and backward) and the rotational motion for 360° are evaluated while adjusting the wind speed, gust condition (wind speed difference), rainfall amount and measuring flight path deviations. The six test cases for evaluating the flight stability of the multi-copter UAS are considered to satisfy various evaluation requests as much as possible. Therefore, it is not mandatory to perform all test cases; the tester and the requester select the suitable test case according to relevant requirements. Each flight stability evaluation is determined by the flight path deviation between the desired and measured values using a measuring system with centimetre-level positioning accuracy. The concept of the overall test method and the considered conditions are shown in Figure 1 and Table 2, respectively.

under wind

a) Take-off and landing stability b) Six-directional flight stability c) Six-directional flight stability under wind

under wind and rain

Key

- 1 test section
- 2 wind nozzle
- 3 rainfall nozzle

Figure 1 — The test method for evaluation of the flight stability

Table 2 — The test method and condition for flight stability evaluation

h Test item idards.ite	Multi-copter UA motion	e2578bb Test condition a03a-f27	Position measurement
Take-off and landing stability	Vertical take-off ↔ landing	Temperature: –20 °C to 50 °C	Real time measuring
under wind(gust)		Wind speed: 1 m/s to 30 m/s	
Take-off and landing stability		Temperature: –20 °C to 50 °C	
under wind(gust) and rain-	Vertical take-off \leftrightarrow landing	Wind speed: 1 m/s to 30 m/s	
fall		Rain fall: 0 mm/h to 20 mm/h	
Six-directional flight stability	Six-directional flight	Temperature: –20 °C to 50 °C	
under wind(gust)	Six-un ectional fiight	Wind speed: 1 m/s to 30 m/s	
Six-directional flight stability		Temperature: –20 °C to 50 °C	three-dimen- sional position of multi-copter UA
under wind(gust) and rain-	Six-directional flight	Wind speed: 1 m/s to 30 m/s	
fall		Rain fall: 0 mm/h to 20 mm/h	
360° rotation flight stability	360° rotational flight	Temperature: –20 °C to 50 °C	
under wind(gust)	500 Totational mgnt	Wind speed: 1 m/s to 30 m/s	
360° rotation flight stabil-	360° rotational flight	Temperature: –20 °C to 50 °C	
ity under wind(gust) and		Wind speed: 1 m/s to 30 m/s	
rainfall		Rain fall: 0 mm/h to 20 mm/h	

The range of wind speed is set from light air to violent storm based on the Beaufort wind force scale,^[2] while the range of rainfall intensity is set from light to heavy rain based on the rainfall intensity categorization.^[3] The maximum wind speed and rain fall rate can be determined by the requester. The considered maximum wind speed and rainfall rate of 30 m/s and 20 mm/h, respectively, are not mandatory. To ensure sufficient intensity of rainfall, droplets of size ranging from 0,5 mm to 4,5 mm are considered.^[4] Most of gust generation methods create a wind speed difference for gust by adjusting the direction of the wind generated by wind generator. Therefore, the test procedure is to adjust the wind speed difference for gust after adjusting the wind speed. All test cases include a step to adjust the wind speed difference for gust; but if a gust test is not performed, this step can be skipped.

4.4.2 Take-off and landing stability test under wind

According to the test purpose, the wind speed and temperature should be adjusted from 1 m/s to 30 m/s and -20 °C to 50 °C, respectively. Spatial deviations between the desired and actual paths should be measured during take-off and landing operations. The stability criterion is that the multi-copter UA should land in an upright position within a set distance from the take-off position.

4.4.3 Take-off and landing stability test under wind and rainfall

According to the test purpose, the wind speed, temperature, and rainfall intensity should be adjusted from 1 m/s to 30 m/s, -20 °C to 50 °C, and 0 mm/h to 20 mm/h, respectively. Spatial deviations between the desired and actual paths should be measured during take-off and landing operations. The stability criterion is that the multi-copter UA should land in an upright position within a set distance from the take-off position.

4.4.4 Six-directional flight stability test under wind

According to the test purpose, the wind speed and temperature should be adjusted from 1 m/s to 30 m/s, and -20 °C to 50 °C, respectively. Spatial deviations between the desired and actual paths should be measured during each six-directional flight, at least 1 m from the start position. The stability criterion is that the multi-copter UA can stay within a set three-dimensional boundary. The wind speed at which the multi-copter UA can no longer remain with the set boundary should be considered.

4.4.5 Six-directional flight stability test under wind and rainfall

According to the test purpose, the wind speed, temperature, and rainfall intensity should be adjusted from 1 m/s to 30 m/s, -20 °C to 50 °C, and 0 mm/h to 20 mm/h (mixed conditions), respectively. Spatial deviations between the desired and actual paths should be measured during each six-directional flight, at least 1 m from the start position. The stability criterion is that the multi-copter UA can stay within a set three-dimensional boundary. The wind speed at which the multi-copter UA can no longer remain with the set boundary should be considered.

4.4.6 Flight stability test under wind during a 360° rotational flight

According to the test purpose, the wind speed and temperature should be adjusted from 1 m/s to 30 m/s, and -20 °C to 50 °C, respectively. Spatial deviations between the desired and actual paths should be measured during a 360° rotational flight. The stability criterion is that the multi-copter UA can stay within a set three-dimensional boundary. The wind speed at which the multi-copter UA can no longer remain with the set boundary should be considered.

4.4.7 Flight stability test under wind and rainfall during a 360° rotational flight

According to the test purpose, the wind speed, temperature, and rainfall intensity should be adjusted from 1 m/s to 30 m/s, -20 °C to 50 °C, and 0 mm/h to 20 mm/h (mixed conditions), respectively. Spatial deviations between the desired and actual paths should be measured during a 360° rotational flight. The stability criterion is that the multi-copter UA can stay within a set three-dimensional boundary. The wind speed at which the multi-copter UA can no longer remain with the set boundary should be considered.

4.5 Measurement system

Any type of spatial precision measurement system, such as those using ultrasound, ultra-wideband, precision motion capture camera, and video recording, that considers flight motion of a multi-copter