

Designation: A513/A513M - 12

Standard Specification for Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing¹

This standard is issued under the fixed designation A513/A513M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification covers electric-resistance-welded carbon and alloy steel tubing for use as mechanical tubing.
- 1.2 This specification covers mechanical tubing made from hot- or cold-rolled steel.
- 1.3 This specification covers round, square, rectangular, and special shape tubing.

Type
Electric-Resistance-Welded Tubing
from Hot-Rolled Steel
Electric-Resistance-Welded Tubing
from Hot-Rolled Steel

Electric-Resistance-Welded Tubing
from Cold-Rolled Steel
Electric-Resistance-Welded Tubing
from Cold-Rolled Steel

Size Range (Round Tubing)

outside diameter from ½
to 15 in. (19.0 to 381.0 mm)

outside diameter from ½ to 15 in.

[10 to 380 mm]

wall from 0.065 to 0.650 in.

(1.65 to 16.50 mm)

wall from 0.065 to 0.650 in.

[1.65 to 16.50 mm]

outside diameter from ¾ to 12 in.

(9.92 to 304.8 mm)

outside diameter from ¾ to 12 in.

[9.5 to 305 mm]

wall from 0.022 to 0.134 in. (0.71
to 3.40 mm)

wall from 0.022 to 0.134 in.

[0.56 to 3.40 mm]

- 1.4 Optional supplementary requirements are provided and when desired, shall be so stated in the order.
- 1.5The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the SI units are shown in brackets or parenthesis. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound unts shall apply unless the "M" designation of this specification is specified in the order. In this specification hard or rationalized conversions apply to diameters, lengths and tensile properties. Soft conversion applies to other SI measurements.

2. Referenced Documents

2.1 ASTM Standards:²

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Shipment

A1008/A1008M Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable

A1011/A1011M Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

A1039/A1039M Specification for Steel, Sheet, Hot Rolled, Carbon, Commercial, Structural, and High-Strength Low-Alloy, Produced by Twin-Roll Casting Process

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.09 on Carbon Steel Tubular Products.

Current edition approved Θ et: May 1, 2008: 2012. Published November 2008. July 2012. Originally approved in 1964. Last previous edition approved in 2008 as A513 – 08. DOI: $\frac{10.1520/A0513-08A}{10.1520/A0513-08A}$. 10.1520/A0513_A0513_M-12.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

A1040 Guide for Specifying Harmonized Standard Grade Compositions for Wrought Carbon, Low-Alloy, and Alloy Steels

E1806 Practice for Sampling Steel and Iron for Determination of Chemical Composition

E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing

E273 Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing

E309 Practice for Eddy-Current Examination of Steel Tubular Products Using Magnetic Saturation

E570 Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products

2.2 ANSI Standard:³

B 46.1 Surface Texture

2.3 Military Standards:⁴

MIL-STD-129 Marking for Shipment and Storage

2.4 Federal Standard:⁴

Fed. Std. No. 123 Marking for Shipments (Civil Agencies)

3. Ordering Information

- 3.1 Orders for material under this specification should include the following as required to adequately describe the desired material:
- 3.1.1 Quantity (feet, metres, or number of lengths),
 - 3.1.2 Name of material (electric resistance-welded carbon or alloy steel mechanical tubing),
 - 3.1.3 Types, conditions and code letters, (See Sections 1 and 12),
 - 3.1.4 Thermal condition, (See 12.2),
 - 3.1.5 Flash condition, (See 12.3),
 - 3.1.6 Grade designation, if required, (See Section 5),
 - 3.1.7 Report chemical analysis and product analysis, if required (See Sections 6 and 7),
 - 3.1.8 Individual supplementary requirements, if required (S1 to S10, inclusive),
 - 3.1.9 Cross section (round, square, rectangular and special shapes),
- 3.1.10 Dimensions, round, outside and inside and wall thickness (See 8.1 and 8.2) or square and rectangular, outside dimension and wall thickness and corner radii, if required (See 9.1 and 9.2),
 - 3.1.11 Length, round, mill lengths or definite cut length (See 8.3), square and rectangular, specified length (See 9.4),
 - 3.1.12 Squareness of cut, round tubing, if required, (See 8.4),
 - 3.1.13 Burrs removed, if required (See 11.2),
 - 3.1.14 Protective coating (See 14.1),
 - 3.1.15 Special packaging (See 17.1),
 - 3.1.16 Specification designation,
 - 3.1.17 End use,

AS 1M A313/A313M-12

- 3.1.18 Special requirements, talog/standards/sist/c8ccb7be-008d-4c5a-8aa5-4a0f412339f9/astm-a513-a513m-12
- 3.1.19 Special marking (See Section 16), and
- 3.1.20 Straightness Test Method (See 8.5 and 9.6).

TABLE 1 Chemical Requirements for Standard Low-Carbon Steels^A

Note 1— Chemistry represents heat analysis. Product analysis, except for rimmed or capped steel, is to be in accordance with usual practice as shown in Table 3.

Grade	Chemical Composition Limits, %						
Designation	Carbon	Manganese	Phosphorus, max	Sulfur, max			
MT ^B 1010	0.02-0.15	0.30-0.60	0.035	0.035			
MT 1015	0.10-0.20	0.30-0.60	0.035	0.035			
MT X 1015	0.10-0.20	0.60-0.90	0.035	0.035			
MT 1020	0.15-0.25	0.30-0.60	0.035	0.035			
MT X 1020	0.15-0.25	0.70-1.00	0.035	0.035			

A Rimmed or capped steels which may be used for the above grades are characterized by a lack of uniformity in their chemical composition, and for this reason product analysis is not technologically appropriate unless misapplication is clearly indicated.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

^B The letters MT under grade designation indicate Mechanical Tubing

4. Materials and Manufacture

- 4.1 The steel may be made by any process.
- 4.2 If a specific type of melting is required by the purchaser, it shall be as stated on the purchase order.
- 4.3 The primary melting may incorporate separate degassing or refining, and may be followed by secondary melting, such as electroslag or vacuum-arc remelting. If secondary melting is employed, the heat shall be defined as all of the ingots remelted from a single primary heat.
- 4.4 Steel may be cast in ingots or may be strand cast. When steel of different grades is sequentially strand cast, identification of the resultant transition material is required. The producer shall remove the transition material by an established procedure that positively separates the grades.
 - 4.5 Tubes shall be made by the electric-resistance-welded process and shall be made from hot- or cold-rolled steel as specified.

5. Chemical Composition

- 5.1 The steel shall conform to the requirements as to chemical composition prescribed in Table 1 or Table 2 (See Specification A1040). If no grade is specified, Grades MT 1010 to MT 1020 may be furnished. Analyses of steels other than those listed are available. To determine their availability, the purchaser should contact the producer.
- 5.2 When a carbon steel grade is ordered under this specification, supplying an alloy grade that specifically requires the addition of any element other than those listed for the ordered grade in Tables 1 and 2 is not permitted.
- 5.3 Mechanical tubing with improved ductility may be produced from Drawing Steel (Types A and B), Deep Drawing Steel, or Extra Deep Drawing Steels identified in Specifications A1008/A1008M, A1011/A1011M, or A1039/A1039M. Those Specifications offer guidance in the form of nonmandatory Typical Ranges of Mechanical Properties.

6. Heat Analysis

6.1 An analysis of each heat of steel shall be made by the steel manufacturer to determine the percentages of the elements specified; if secondary melting processes are employed, the heat analysis shall be obtained from one remelted ingot or the product of one remelted ingot of each primary melt. The heat analysis shall conform to the requirements specified, except that where the heat identity has not been maintained or where the analysis is not sufficiently complete to permit conformance to be determined,

TABLE 2 Chemical Requirements for Other Carbon and Alloy Steels^A

Note 1—Chemistry represents heat analysis. Product analysis, except for rimmed or capped steel, is to be in accordance with usual practice as shown in Table 3.

	Chemical Composition Limits, %									
Grade – Designation	Carbon	Manganese	Phosphorus, max	Sulfur, max	A513\Silicon	Nickel	Chromium	Molybdenum		
1008 08:7/Stand	0.10 max	0.50 max	ards 0.035 C8CC	0.035	08d-4c5a-8aa3	-4a0f412339	19/astm-a513	-a513m-12		
1009	0.15 max	0.60 max	0.035	0.035						
1010	0.08-0.13	0.30-0.60	0.035	0.035						
1012	0.10-0.15	0.30-0.60	0.035	0.035						
1015	0.13-0.18	0.30-0.60	0.035	0.035						
1016	0.13-0.18	0.60-0.90	0.035	0.035						
1017	0.15-0.20	0.30-0.60	0.035	0.035						
1018	0.15-0.20	0.60-0.90	0.035	0.035						
1019	0.15-0.20	0.70-1.00	0.035	0.035						
1020	0.18-0.23	0.30-0.60	0.035	0.035						
1021	0.18-0.23	0.60-0.90	0.035	0.035						
1022	0.18-0.23	0.70-1.00	0.035	0.035						
1023	0.20-0.25	0.30-0.60	0.035	0.035						
1024	0.18-0.25	1.30-1.65	0.035	0.035						
1025	0.22-0.28	0.30-0.60	0.035	0.035						
1026	0.22-0.28	0.60-0.90	0.035	0.035						
1027	0.22-0.29	1.20-1.55	0.035	0.035						
1030	0.28-0.34	0.60-0.90	0.035	0.035						
1033	0.30-0.36	0.70-1.00	0.035	0.035						
1035	0.32-0.38	0.60-0.90	0.035	0.035						
1040	0.37-0.44	0.60-0.90	0.040	0.050						
1050	0.48-0.55	0.60-0.90	0.040	0.050						
1060	0.55-0.65	0.60-0.90	0.040	0.050						
1340	0.38-0.43	1.60-1.90	0.035	0.040	0.15-0.35					
1524	0.19-0.25	1.35-1.65	0.040	0.050						
4118	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35		0.40-0.60	0.08-0.15		
4130	0.28-0.33	0.40-0.60	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25		
4140	0.38-0.43	0.75-1.00	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25		
5130	0.28-0.33	0.70-0.90	0.035	0.040	0.15-0.35		0.80-1.10			
8620	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25		
8630	0.28-0.33	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25		

^A Where the ellipsis (...) appears in this table, there is no requirement.

the chemical composition determined from a product analysis made by the tubular manufacturer shall conform to the requirements specified for heat analysis. When requested in the order or contract, a report of such analysis shall be furnished to the purchaser.

7. Product Analysis

- 7.1 When requested on the purchase order, a product analysis shall be made by the supplier. The number and source of samples for such product analysis shall be based on the individual heat or lot identity of one of the following forms of material:
 - 7.1.1 Heat Identity Maintained—One product analysis per heat shall be made on either the flat-rolled stock or tube.
- 7.1.2 Heat Identity Not Maintained —A product from one tube per 2000 ft (610 m)[600 m] or less for sizes over 3 in. (76.2 mm),[75 mm], and one tube per 5000 ft (150 m)[1500 m] or less for sizes 3 in. [75 mm] and under.
- 7.2 Samples for product analysis except for spectrochemical analysis shall be taken in accordance with Practice E1806. The composition thus determined shall correspond to the requirements of Tables 1-3 Tables 1 and 2.
 - 7.3 If the original test for product analysis fails, retests of two additional lengths of flat-rolled stock or tubes shall be made. Both retests for the elements in question shall meet the requirements of the specification; otherwise, all remaining material in the heat or lot shall be rejected or, at the option of the producer, each length of flat-rolled stock or tube may be individually tested for acceptance. Lengths of flat-rolled stock or tubes which do not meet the requirements of the specification shall be rejected.

8. Permissible Variations in Dimensions for Round Tubing

- 8.1 Diameter and Wall Thickness (Hot-Rolled Steel)—Variations from specified outside diameter for "as-welded" and "as-welded and annealed" tubing made from hot-rolled steel shall not exceed the amounts prescribed in Table 4. Permissible variations in outside diameter for tubing that has been sink-drawn for closer tolerance on outside diameter are shown in Table 5. Permissible variations in wall thickness for tubing that has been sink-drawn for closer tolerances on outside diameters are $\pm 10\%$ of the nominal wall or ± 0.010 in. (0.25 mm), whichever is greater. Permissible variations in wall thickness for tubing made from hot-rolled steel are shown in Table 6 and 7. Permissible variation in outside and inside diameter for tubing made from hot-rolled steel that has been Drawn Over a Mandrel (DOM) for closer tolerances are shown in Table 5 with wall tolerances shown in Table 7 Tables 8 and 9.
- 8.2 Diameter and Wall Thickness (Cold-Rolled Steel)—Variations in outside diameter and inside diameter of "as-welded" and "as-welded and annealed" tubing made from cold-rolled steel are shown in Table 8 Table 10. Outside diameter tolerances for cold-rolled steel tubing, sink drawn and DOM, are shown in Table 5. Wall thickness tolerances for "as-welded" tubing made from cold-rolled steel are shown in Table 9 Tables 11 and 12. Permissible variations in wall thickness for round tubing, DOM for closer tolerances, are shown in Table 7 Tables 8 and 9. Permissible variations in wall thickness for tubing that has been sink-drawn for closer tolerances on outside diameter are ± 10 % of the nominal wall or ± 0.010 in. (0.25 mm), whichever is greater.
- 8.3 Length (Hot- and Cold-Rolled Steel)—Mechanical tubing is commonly furnished in mill lengths 5 ft (1.5 m) and over. Definite cut lengths are furnished when specified by the purchaser. Tolerances for definite cut lengths round tubing shall be as given in Tables 10 and Tables 13 and 1114.
- 8.4 Squareness of Cut (Hot- and Cold-Rolled Steel)—When specified, tolerance for squareness of cut of round tubing shall be as given in Table 12 Table 15. Measurements are made with use of an "L" square and feeler gage. Side gauge. The long leg (blade)

TABLE 3 Tolerances for Product Analysis for Steels Shown in Tables 1 and $\mathbf{2}^{A}$, B

Element	Limit, or Maximum of	Variation, Over the Maximum Limit or Under the Minimum Limit			
	Specified Range, %	Under min, %	Over max,		
Carbon	to 0.15, incl	0.02	0.03		
	over 0.15 to 0.40, incl	0.03	0.04		
	over 0.40 to 0.55, incl	0.03	0.05		
Manganese	to 0.60, incl	0.03	0.03		
	over 0.60 to 1.15, incl	0.04	0.04		
	over 1.15 to 1.65, incl	0.05	0.05		
Phosphorus			0.01		
Sulfur			0.01		
Silicon	to 0.30, incl	0.02	0.03		
	over 0.30 to 0.60	0.05	0.05		
Nickel	to 1.00, incl	0.03	0.03		
Chromium	to 0.90, incl	0.03	0.03		
	over 0.90 to 2.10, incl	0.05	0.05		
Molybdenum	to 0.20, incl	0.01	0.01		
	over 0.20 to 0.40, incl	0.02	0.02		

^A Individual determinations may vary from the specified heat limits or ranges to the extent shown in this table, except that any element in a heat may not vary both above and below a specified range.

^B Where the ellipsis (...) appears in this table, there is no requirement.

TABLE 4 Diameter Tolerances for Type I (A.W.H.R.) Round Tubing

Note-1—Measurements for diameter are to be taken at least 2 in.A [50 mm] from the ends of the tubes.

Outside Diameter	V	Vall Thickness	-	Flash-in- Tubing ^{B<u>A</u>,G<u>B</u>}	Flash- Controlled t Co- 0.010 in. max trolle to 0.010 in. (0.26 mm) max Tubing EB. BC	Flash Controlled to 0.005 in. max (0.13 mm). max Tubing EC,D		
Range , in. ^A in. [mm]	Bwq ^F .	<u>∈</u> in. Α	_ (mm)	Outside Diameter, ±			Inside Diameter, \pm	
	Dwg .	_ III./\			Tolerances,			
			<u>in. (mm)</u>	<u>in. (mm)</u>	<u>in. (mm)</u>	<u>in. (mm)</u>		
½ to 1½ , incl ½ to 1½ , incl [15 to 30] Over 1½ to 2, incl	16 to 10	-to 1 0 0.065 to 0.134 (1.7 to 3.4) -to14	0.065 to0.134 0.0035 (0.09) 0.065 to0.083	0.0035 (0.09	-0.0035)0.0035 (0.09) 0.005	-0.0035 0.02035 0.005	-0.00350.020 - <u>(0.51)</u> 0.0050.021	
Over 11/8 to 2, incl [30 to 50] Over 11/8 to 2, incl	16 to 14 13	0.065 to 0.083 (1.7 to 2.1) to 7	0.005 (0.13) 0.095 to0.180	0.005 (0.13)	0.005 (0.13) 0.005	0.021 (0 5 0.0050.005	θ <u>.53)</u> 0.025	
Over 11/8 to 2, incl [30 to 50]	13 to 7	0.095 to 0.180 (2.4 to 4.6) -to5	0.005 (0.13) 0.203 to 0.220	0.005 (0.13)	0.005 (0.13) 0.005	0.025 (0. 005 0.005	0.025 64) 0.005	0.0 29
Over 11/6 to 2, incl [30 to 50]	6 to 5 4	0.203 to 0.220 (5.2 to 5.6) -to 3		0.005 (0.13)		0.0 05 0.005.99)		0.029 (0.74)
Over 11/8 to 2, incl [30 to 50]	4 to 3 0.005	0.238 to 0.259 (6.0 to 6.6) 0.039 0.039	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	0.039 (0.99)		
Over 2 to 2½, incl Over 2 to 2½, incl [50 to 65] Over 2 to 2½, incl	16 16 to 14	-to14 0.065 to 0.083 (1.7 to 2.1) -to 5	0.065 to0.083 0.006 (0.15) 0.095 to0.220	0.006 (0.15)	0.006 0.006 (0.15) 0.006	0.006 0.022 (06 0.006	θ <u>.0060.022</u> θ <u>.56)</u> θ.0060.024	
Over 2 to 2½, incl [50 to 65] Over 2 to 2½, incl	13 to 5 4	0.095 to 0.220 (2.4 to 5.6) -to 3	0.006 (0.15) 0.238 to0.259	0.006 (0.15)	0.006 (0.15) 0.006	0.024 (0 6 0.006	0 .61) 0 .0 06	0.040
Over 2 to 2½, incl [50 to 65]] <u>4 to 3</u> 16	0.238 to 0.259 (6.0 to 6.6) -to14	0.006 (0.15) 0.065 to0.083		0.006 (0.15) 0.008	0.040 6 0.008	0_(1.006 0.008	0.040 2) 0.0 24
Over 2½ to 3, incl [65 to 75]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	0.008 (0.20) 0.095 to 0.220	0.008 (0.20)	0.008 (0.20) 0.008	0.0 08 0.0 08	0.008 0.008	0.024 (0.61) 0.026
Over 2½ to 3, incl [65 to 75] Over 2½ to 3, incl		0.095 to 0.220 (2.4 to 5.6) to 3		0.008 (0.20)		0.026 (08 0.008	0.008 0.008	0.0266) 0.040
Over 2½ to 3, incl [65 to 75] Over 2½ to 3, incl	•	0.238 to 0.259 (6.0 to 6.6) to 0.320		0.008 (0.20)		0.0408 0.010.22)	θ <u>(1.0</u> θ8	0.040 2)
Over 2½ to 3, incl [65 to 75]	_			0.010 (0.25)		0.048 (1.22)		
		0.048 ASTIV						
Over 3 to 3½, inel Over 3 to 3½, incl [75 to 90 Over 3 to 3½, incl	13 to 5 4 14 to 3 2	-to14 0.065 to 0.083 (1.7 to 2.1) -to-5 0.095 to 0.220 (2.4 to 5.6) -to-3 0.238 to 0.259 (6.0 to 6.6) -to 0.360 0.284 to 0.360 (7.2 to 9.1) 0.050 0.050	0.095 to0.220 0.009 (0.23) 0.238 to0.259 0.009 (0.23) 0.284 to0.360	0.009 (0.23) 0.009 (0.23) 0.009 (0.23)	0.009 0.009 (0.23) 0.009 0.009 (0.23) 0.012	0.009 0.009 0.009 0.027 (09 0.009 0.009 0.0127) 0.050 (1.27)	0.009 0.009 0.0090.027 0.69) 0.0090.043 043 (1.09)	0.025 0.025 (0.64)
Over 3½ to 4, incl Over 3½ to 4, incl [90 to 100 Over 3½ to 4, incl	13 0]13 to 5 4 0]4 to 3 2	-te14 0.065 to 0.083 (1.7 to 2.1) -te-5 0.095 to 0.220 (2.4 to 5.6) -te-3 0.238 to 0.259 (6.0 to 6.6) -te-0.500	0.095 to0.220 0.010 (0.25) 0.238 to0.259 0.010 (0.25) 0.284 to0.500	0.010 (0.25) 0.010 (0.25) 0.010 (0.25)	0.010 0.010 (0.25) 0.010 (0.25) 0.010 (0.25) 0.015	0.0100.010 0.026 (0.010 0.0100.010 0.028 (0.010 0.010 0.044 (10 0.015) 0.053 (1.35)	0.026 0.0266) 0.028 0.072) 0.010 0.10	0.044 0.044 2)
Over 4 to 5, incl	16	-						
to14 Over 4 to 5, incl [100 to 130]	13 to 5 0.020 4 to 3 0.020 2 to 0.500 [12.7]	- 0.065 to 0.083 (1.7 to 2.1) -to-5 0.095 to 0.220 (2.4 to 5.6) 0.045Over 4 to 5, incl 0.238 to 0.259 (6.0 to 6.6) -0.02-0 7]0.284 to 0.500 (7.2 to 12.7 to 0.50058 (1.47)	0.095 to 0.220 0.020 (0.51) 4 0.020 (0.51) 0.020	0.020 (0.51) to 3 0.020 (0.51) 0.054	0.020 0.020 (0.51) 0.238 to0.259	0.036 (0.91) 0.0245 (1.14) 0.045 (1.14) 0.054 (1.37) 0.054 (1.37)		
	2	100.0000 (1.47)						

TABLE 4 Continued

		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Outside Diameter	٧	Wall Thickness	-	Flash-in- Tubing ^{BA,GE}	Flash-Controlled t Co-0.010 in. maxtrolle to 0.010 in. (0.26 mm) max Tubing EB.PC	dFlash Controlled to 0.005 inmax (0.13 mm). max Tubing ^{EC.D}	ŧ	
Range , in. ^A <u>in. [mm]</u>	Bwg [£]	r⊆ in. A	_ (mm)	Outside Diameter, ±		Outside Diameter, ±	Inside Diameter, \pm	-
1	Dwg -	_ 111.74		• ()	Tolerances,			-
Over 4 to 5, incl1)	0.020 (0.51)	0.058 (1.47)	in. (mm)	in. (mm)	<u>in. (mm)</u>	in. (mm)	-	
<u> </u>	0.284 to 0.500	<u>0.000 (1.47)</u>	0.020	0.020	0.020	0.058		
Over 5 to 6, incl [130 to 150] Over5 to 6, incl 0.020 (0.51) Over 5 to 10 Over 5 to 6, incl [130 to 150] Over 5 to 6, incl	16 0.020 (0.51) 0.065 to 0.134	0.065 to 0.134 (1.7 to 3.4) 0.036 (0.91) 0.036 (0.91) - 0.148 to 0.220 (3.8 to 5.6) -to5	0.020		0.020 0.020 (0.51) 0.020	0.036 0.040 (10.02) 0.0254 (1.37)		
Over 5 to 6 incl [130 to 150]		0.238 to 0.259 (6.0 to 6.6) 0.04 0Over5 to 6 incl	<u>0.020 (0.51)</u> 4	$\frac{0.020 (0.51)}{\text{to } 3}$	0.020 (0.51)	0.054 (1.37)		
Over 5 to 6, incl [130 Over 5 to 6, incl [130 to 150]	0.020				0.238 to0.259 0.020 (0.51)	0.058 (1.47)		
Over 5 to 6, incl Over 5 to 6, incl	2	-						
to 0.500 Over 6 to 8, incl [150 to 200]	0.284 to 0.500 11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.020 0.025 (0.64)	0.020 0.025 (0.64)	0.020 0.025 (0.64)	0.058 0.043 (1.09)		
Over 6 to 8, incl [150 to 200]	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.025 (0.64)					
0.025 (0.64) Over 6 to10 Over 6 to 8, incl [150 to 200]	0.025 (0.64) 0.120 to 0.1 34 4 to 3	0.045 (1.14) - 0.238 to 0.259 (6.0 to 6.6)	. ,	, ,		0.043 0.059 (1.50)		
Over 6 to 8, incl [150 to 200]	9 2 to 0.500 [12.7 0.025	-to5 7]0.284 to 0.500 (7.2 to 12.7 0.045 0.045	0.148 to0.220 ()0.025 (0.64)	0.025 (0.64)	0.025 0.025 (0.64)	0.02563 (1.60) 0.063 (1.60)		
Over 6 to 8, incl	<u>4</u>	to 3	0.238 to 0.259	9				
Over 6 to 8, incl Over 8 to 10, incl [200 to	0.025	0.025 <u>AST</u>	0.025 513/	0.059				
250] Over 8 to 10, incl [200 to 250]	14 to 12 atal		0.030 (0.76)	0.059 4 6 5 8				
Over <u>6 to 8, incl</u> Over30 (0.76) Over 8 to0.500	2 0.030 (0.76) 0.284 to 0.500	0.041 (1.04) 0.041 (1.04)	0.025	0.025	0.025	0.063		
Over 8 to 10, incl [200 to 250]	11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.030 (0.76)	0.030 (0.76)	0.030 (0.76)	0.043 (1.09)		
Over 8 to 10, incl [200 to 250]	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.030 (0.76)	0.030 (0.76)	0.030 (0.76)	0.045 (1.14)		
Over 8 to 10, incl Over 8 to 10, incl [200 to 250]	14 4 to 3	-to 12 0.238 to 0.259 (6.0 to 6.6)	0.083 to0.109 0.030 (0.76)		0.030 0.030 (0.76)	0.030 0.030 (0.76)	0.030 0.030	θ <u>.041</u> θ <u>59 (1.50)</u>
Over 8 to 10, incl Over 8 to 10, incl [200 to 250]	11 2 to 0.500 [12.7	to 1 0 7]0.248 to 0.500 (7.2 to 12.7	0.120 to0.134 ()0.030 (0.76)		0.030 0.030 (0.76)	0.030 0.030 (0.76)	0.030 0.0630	0.043 0_(1.60)
Over 8 to 10, incl	9	to 5	0.148 to 0.220	€	0.030	0.030	0.030 0.030	0.045 0.045
Over 8 to 10, incl Over 10 to 12, incl [250 to 300]	4 14 to 12	-to 3 0.083 to 0.109 (2.1 to 2.8)	0.238 to0.259 0.035 (0.89)		0.030 0.035 (0.89)	0.030 0.035 (0.89)	0.030 0.030	0.059 041 (1.04)
Over 8 to 10, incl Over 10 to 12, incl [250 to 300]	2 11 to 10	-to 0.500 0.120 to 0.134 (3.0 to 3.4)	0.248 to 0.500 0.035 (0.89)		0.030 0.035 (0.89)	0.030 0.035 (0.89)	0.030 0.0430	θ.063 θ <u>(1.09)</u>
Over 10 to 12, incl [250 to	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.035 (0.89)	0.035 (0.89)	0.035 (0.89)	0.045 (1.14)		
300] Over 10 to 12, incl Over 10 to 12, incl [250 to 300]	14 <u>4 to 3</u>	-to 12 0.238 to 0.259 (6.0 to 6.6)	0.083 to0.109 0.035 (0.89)		0.035 0.035 (0.89)	0.035 0.035 (0.89)	0.0350.041 0.059 (1.50)	
Over 10 to 12, incl	11	-to-1-0	0.120 to 0.134		0.035	0.035	0.035	0.043

TABLE 4 Continued

Outside Diameter Range , in A		Wall Thickness	-	Flash-in- Tubing ^B A. ^G E	Flash-Controlled t Co-0.010 in. maxtrolle to 0.010 in. (0.26 mm) max Tubing EB.BC	Flash Controlled to 0.005 in.—max (0.13 mm). max Tubing ^{EC,D}	(
in. [mm]			– (mm)	Outside Diameter, ±	Outside Diameter, ±	Outside Diameter, ±	Inside Diameter, ±	
	В	wg ^{FE} in. A	<u> </u>		Tolerances			_
			<u>in. (mm)</u>	in. (mm)	in. (mm)	in. (mm)		_
Over 10 to 12, incl [250 to	2 to 0.500 [12.7]0.284 to 0.500 (7.2 to 12.	7)0.035 (0.89)		0.035 (0.89)	0.035 (0.89)	<u>0.063</u> 5	θ <u>(1.60)</u>
300] Over 10 to 12, incl	9	-to-5	0.148 to 0.22	θ	0.035	0.035	0.035 0.035	0.045 0.045
Over 10 to 12, incl	4	-to-3	0.238 to 0.259	,	0.035	0.035	0.0350.059	0.010
Over 12 to 15, incl [300 to 380]	14 to 12	0.083 to 0.109 (2.1 to 2.8)	0.040 (1.02)		0.040 (1.02)	0.040 (1.02)	0.058 (1.47)	
Over 10 to 12, incl	2	-to-0.500	0.284 to 0.500	•	0.035	0.0358 (1.47)		
Over 12 to 15, incl [300 to	11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.040 (1.02)	0.040 (1.02)	0.040 (1.02)	0.058 (1.47)		
380] Over 12 to 15, incl [300 to 380]	0.03 5	0. 063						
Over 12 to 15, incl [300 to	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.040 (1.02)	0.040 (1.02)	0.040 (1.02)	0.060 (1.52)		
380] Over 12 to 15, incl	14	-to-12	0.083 to0.109	•	0.040	0.040	0.040	0.05 8
Over 12 to 15, incl [300 to	4 to 3	0.238 to 0.259 (6.0 to 6.6)				<u>0.074</u> 0	0 <u>(1.040</u>	0.05 <u>88)</u>
380] Over 12 to 15, incl	11	-to 1 0	0.120 to 0.13	4	0.040	0.040	0.040	0.058
Over 12 to 15, incl [300 to		12.7]0.284 to 0.500 (7.2 to 12.			0.040 0.040	0.040	0.040	0.058
380]			_					
Over 12 to 15, incl		9 to 5	0.148 to 0.22		0.040	0.040	0.040	0.060
Over 12 to 15, incl		90.040 (1.02) 4 to 3	0.148 to 0.22 0.238 to 0.25	-	0.040 0.040	0.040 0.040	0.040 0.040	0.060 0.074
Over 12 to 15, incl		40.040 (1.02)	0.238 to 0.25		0.040	0.040 0.040	0.040 0.040	0.074 0.074
Over 12 to 15, incl		2 to0.500	0.284 to 0.500		0.040	0.040	0.040	0.074
Over 12 to 15, incl		20.040 (1.02)	0.0.500		0.040	0.040	0.040	0.0 86 (2.18)

^A +Flash-In-Tubing is produced only to outside diameter tolerances and wall thickness tolerances and the inside diameter welding flash does not exceed the wall thickness or ½ in.— (25.4 mm), whichever is less.

of <u>the</u> square to be equal to tube diameter except <u>plus a minimum length</u> of 1 in. (25.4-mm) and maximum length of 4 in. (101.6 mm). Outside diameter burr to be removed for measurement.

- 8.5 Straightness— The straightness tolerance for round tubing is 0.030 in./3 ft (0.76 mm/1m)[0.75 mm/1m] lengths to 8.000 in. (203 mm)[200 mm] outside diameter. For 8.000 in. [200 mm] outside diameter and above, straightness tolerance is 0.060 in./3 ft (1.52[1.5 mm/1 m)m] lengths. For lengths under 1 ft [305 mm] the straightness tolerance shall be agreed upon between the purchaser and producer. The test method for straightness measurement is at the manufacturer's option, unless a specific test method is specified in the purchase order.
- 8.6 *Ovality (Hot- and Cold-Rolled Steel)*—The ovality shall be within the tolerances except when the wall thickness is less than 3 % of the outside diameter.
- 8.6.1 In such cases for Types 1 and 2 (A.W.H.R. and A.W.C.R.) the ovality may be 50 % greater than the outside tolerances but the mean outside diameter shall be within the specified tolerance.
- 8.6.2 For Types 3, 4, 5, and 6 (S.D.H.R., S.D.C.R., DOM, and S.S.I.D.) the additional ovality shall be as follows but the mean outside diameter shall be within the specified tolerance:

^B Flash-I Con-Ttrolled to 0.010 in. (0.25 mm) maximum tubing consists of tubing which is commonly produced only to outside diameter tolerances and wall thickness tolerances-a, ind which the insid he-diameght of the remaining welding flash-d is controlled not to exceed the wall thickness or ½2 in 0., wh010 ichever is lessn.

^C Flash Controlled to 0.0405 in. (0.13 mm) maximum tubing-eens ists of tubing which is commonly produced-only to outside diameters and wall thickness tolerance, inside diameter and wall thickness tolerances, or outside diameters and inside diameter tolerances, in which the height of the remaining welding flash is controlled not to exceed 0.0405 in. Any remaining flash is considered to be part of the applicable inside diameter tolerances.

^D No Flash tubing is further processed by DOM for closer tolerances, produced to outside diameter and wall, inside diameter and wall, or outside diameter and inside diameter, with no dimensional indication of inside diameter flash, and is available in Types 5 and 6.

Flash Controlled to 0.005Bin-maximum tubing is produced to outside diameters and wall thickness tolerance, inside diameter and wall th Wickness tolerances, or outside diameters and inside diameter tolerances, in which the height of the remaining flash is controlled not to exceed 0.005 in. Any remaining flash is considered to be part of the applicable inside diameter tolerances.

Birmingham Wire Gage.

The ovality shall be within the above tolerances except when the wall thickness is less than 3 % of the outside diameter, in such cases see 8.6.1.

TABLE 5 Diameter Tolerances for Types 3, 4, 5, and 6 (S.D.H.R., S.D.C.R., DOM, and S.S.I.D) Round Tubing

Note—1—Measurements for diameter are to be taken at least 2 in. [50 mm] from the ends of the tubes.

OD Size Range ^A	Wall- %		(Sink Drawn) ^{A,B} DOM) ^{B,C} OD , in.	Types 5 and 6 (DOM) ^{B,C} ,-ID -in.		
<u>in. (mm)</u>	of OD	Over Under in. (mm)		Over in. (mm)	Under in. (mm)	
				<u>III. (IIIII)</u>	<u>III. (IIIII)</u>	
Up to 0.499	all	0.004	0.000			
<u>Up to 0.499</u>	<u>all</u>	0.004	0.000	<u> </u>	<u></u>	
(12.67)		(0.10)	(0.00)			
0.500 to 1.699	_all	0.005	0.000	0.000	0.005	
0.500 to 1.699	<u>all</u>	0.005	0.000	0.000	0.005	
(12.70 to 43.15)		(0.13)	<u>(0.00)</u>	<u>(0.00)</u>	(0.13)	
1.700 to 2.099	all	0.006	0.000	0.000	0.006	
1.700 to 2.099	<u>all</u>	0.006	0.000	0.000	0.006	
(43.18 to 53.31)		<u>(0.15)</u>	(0.00)	<u>(0.00)</u>	<u>(0.15)</u>	
2.100 to 2.499	—all	0.007	0.000	0.000	0.007	
2.100 to 2.499	<u>all</u>	0.007	0.000	0.000	0.007	
(53.34 to 63.47)		(0.18)	(0.00)	(0.00)	<u>(0.18)</u>	
2.500 to 2.899	—all	0.008	0.000	0.000	0.008	
2.500 to 2.899	<u>all</u>	0.008	0.000	0.000	0.008	
(63.50 to 73.63)		(0.20)	(0.00)	(0.00)	(0.20)	
2.900 to 3.299	all	0.009	0.000	0.000	0.009	
2.900 to 3.299	all	0.009	0.000	0.000	0.009	
(73.66 to 83.79)	_	(0.23)	(0.00)	(0.00)	(0.23)	
3.300 to 3.699	all	0.010	0.000	0.000	0.010	
3.300 to 3.699	<u>all</u>	0.010	0.000	0.000	0.010	
(83.82 to 93.95)	_	(0.25)	(0.00)	(0.00)	(0.25)	
3.700 to 4.099	all	0.011	0.000	0.000	0.011	
3.700 to 4.099	all	0.011	0.000	0.000	0.011	
(93.98 to 104.11)		(0.28)	$\frac{0.000}{(0.00)}$	(0.00)	(0.28)	
4.100 to 4.499	—all	0.012	0.000	0.000	0.012	
4.100 to 4.499	all	0.012	0.000	0.000	0.012	
(104.14 to 114.27)		$\frac{0.012}{(0.30)}$	$\frac{0.000}{(0.00)}$	(0.00)	(0.30)	
4.500 to 4.899	—all _	0.013	0.000	0.000	0.013	
4.500 to 4.899		0.013	0.000	0.000	0.013	
(114.30 to 124.43)		$\frac{0.013}{(0.33)}$	$\frac{0.000}{(0.00)}$	$\frac{0.000}{(0.00)}$	(0.33)	
4.900 to 5.299	-all	0.014	(0.00) 0.000	(0.00)	0.014	
4.900 to 5.299 (104.46 to 104.50)	<u>all</u>	$\frac{0.014}{(0.36)}$	$\frac{0.000}{(0.00)}$	0.000	0.014	
(124.46 to 134.59)	-11		(0.00)	(0.00)	(0.36)	
5.300 to 5.549	all	0.015	0.000	0.000	0.015	
5.300 to 5.549	<u>all</u>	0.015	0.000	0.000	0.015	
(134.62 to 140.94)		(0.38)	(0.00)	(0.00)	(0.38)	
5.550 to 5.999	—under 6	A 0.010 A 1 1 3	A3131 0.010	0.010	0.010	
5.550 to 5.999	n ai/ca <mark>under 6</mark> /standards	$\frac{0.010}{6.000}$ h 7 he-	$0.08d - 4\frac{0.010}{0.05} - 8aa5 - 4$	$\frac{10.010}{10.25}$ 9f9/astr	$m-a51\frac{0.010}{(0.25)}13m$	
(140.97 to 152.37)	in out out of surface of	(0.25)	(0.25)	(0.23)	(0.23)	
	- 6 and over	0.009	0.009	0.009	0.009	
_	6 and over	0.009	0.009	0.009	0.009	
		(0.23)	(0.23)	<u>(0.23)</u>	(0.23)	
6.000 to 6.499	- under 6	0.013	0.013	0.013	0.013	
6.000 to 6.499	<u>under 6</u>	0.013	<u>0.013</u>	<u>0.013</u>	<u>0.013</u>	
(152.40 to 165.07)		(0.33)	(0.33)	(0.33)	(0.33)	
	— 6 and over	0.010	0.010	0.010	0.010	
	6 and over	0.010	0.010	0.010	0.010	
_		(0.25)	(0.25)	(0.25)	(0.25)	
6.500 to 6.999	under 6	0.015	0.015	0.015	0.015	
6.500 to 6.999	under 6	0.015	0.015	0.015	0.015	
(165.10 to 177.77)		(0.38)	(0.38)	(0.38)	(0.38)	
	- 6 and over	0.012	0.012	0.012	0.012	
	6 and over	0.012	0.012	0.012	0.012	
_		(0.30)	(0.30)	(0.30)	(0.30)	
7.000 to 7.499	under 6	0.018	0.018	0.018	0.018	
7.000 to 7.499	under 6	0.018	0.018	0.018	0.018	
(177.80 to 190.47)	<u></u>	(0.46)	(0.46)	(0.46)	(0.46)	
	—6 and over	0.40) 0.013	0.40) 0.013	0.40) 0.013	0.40) 0.013	
	6 and over	0.013	0.013	0.013	0.013	
_	<u>o ana over</u>	(0.33)	(0.33)	(0.33)	(0.33)	
7.500 to 7.999	under 6	(0.33) 0.020	(0.33) 0.020	(0.33) 0.020	(0.33) 0.020	
				0.020 0.020		
7.500 to 7.999 (100 50 to 202 17)	<u>under 6</u>	0.020	0.020		0.020	
(190.50 to 203.17)	6 and are:	<u>(0.51)</u>	<u>(0.51)</u>	<u>(0.51)</u>	<u>(0.51)</u>	
	- 6 and over	0.015	0.015	0.015	0.015	
_	6 and over	0.015	0.015	0.015	0.015	
		(0.38)	(0.38)	(0.38)	(0.38)	
8.000 to 8.499	under 6	0.023	0.023	0.023	0.023	
8.000 to 8.499	under 6	0.023	0.023	0.023	0.023	
(203.20 to 215.87)		(0.58)	(0.58)	(0.58)	(0.58)	
	— 6 and over	0.016	0.016	0.016	0.016	
	6 and over	0.016	0.016	0.016	0.016	
_		(0.41)	(0.41)	(0.41)	(0.41)	
8.500 to 8.999	under 6	0.025	0.025	0.025	0.025	
8.500 to 8.999	under 6	0.025 8	0.025	0.025	0.025	
(215.90 to 228.57)		(0.64)	(0.66)	(0.66)	(0.64)	
	6 and over	0.017	0.017	0.017	0.017	
	6 and over	0.017	0.017	0.017	0.017	

Over 12 to 15, incl A513/A513M - 12 Over 10 to 12, incl 0.013 0.013 0.013 0.013 0.014 0.014 0.017 0.022 0.022 0.023 0.027 0.027 0.027 0.027 0.027 $\begin{array}{c} \dots \\ 0.0003 \\ 0$ 0.013 0.013 0.013 0.014 0.014 0.014 0.017 0.017 Over 8 to 10, incl 0.022 0.023 0.024 0.025 0.027 0.027 0.027 0.028 0.028 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.010 0.011 0.012 0.013 0.014 0.015 0.015 0.016 0.016 0.016 ... 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.017 0.017 0.017 0.023 0.023 0.025 0.025 0.027 0.027 0.027 0.028 0.028 Over 6 to 8, incl 0.010 0.011 0.012 0.013 0.015 0.015 0.016 0.016 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.014 0.015 0.016 0.012 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0017 0.0017 0.023 0.023 0.025 0.025 0.027 0.027 0.027 0.028 0.028 2 Over 4½ 1 6, incl 0.015 0.015 0.016 0.016 0.016 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.005 +QB .⊑ Outside Diameter, in. ^ Wall Thickness Tolerances, 0.012 0.013 0.013 0.013 0.013 0.014 Over 33/4 to 41/2, 0.015 0.015 0.016 0.016 0.016 0.012 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.010 0.011 0.014 0.021 0.023 0.023 0.025 0.025 0.026 0.026 0.027 Over 115/16 to 3%, incl 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.006 0.011 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.015 0.020 0.020 0.022 0.023 0.025 0.025 Over 1 to 115/16, incl 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.010 0.010 0.011 0.011 0.012 0.012 to 1, incl 3/4 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.009 0.009 0.010 0.010 0.010 0.005 0.005 0.006 0.006 0.006 Bwg^B≜ Wall+ Thickness 'n. 0.065 0.072 0.083 0.095 0.109 0.134 0.148 0.148 0.165 0.223 0.223 0.223 0.223 0.223 0.223 0.223 0.223 0.223 0.233 0.233 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336

3919/astm-a513-a513m-12

^BBirmingham Wire Gage.

[©] Where the ellipsis (...) appears in this table, the tolerance is not addressed.

^A +Birmin. = 25.4ghamm Wire Gauge.

nups://standards.iten.ai

TABLE 6 Wall Thickness Tolerance for Type I (A.W.H.R.) Round Tubing (Inch Units)

♣ A513/A513M − 12

	to 305 Over 305 to 380	to 380		11		
					+1	
) to 305		11	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	
		Over 250 to 305 mm Incl		+1	1 1 1 1 1 1 1 1 1 1	
) to 250		11	0.33 0.33 0.33 0.33 0.33 0.36 0.43 0.64 0.66 0.66 0.66 0.66 0.66 0.66 0.66	
(Units		Over 200 to 250 <u>mm incl</u>		+1	0.08 0.08 0.08 0.10 0.10 0.13 0.33 0.33 0.33 0.33 0.33	
Tubing (S		Over 150 to 200 mm Incl		11	0.30 0.33 0.33 0.33 0.33 0.33 0.43 0.64 0.66 0.66 0.66 0.71 0.71	
Bound (mm, ± ^A	+1	0.05 0.008 0.008 0.008 0.008 0.10 0.10 0.13 0.33 0.33 0.33 0.33 0.33	
(A.W.H.R.	ameter, mn	Outside Diameter, mm	mm incl mm incl mw incl Mall Thickness Tolerances		11	0.30 0.33 0.33 0.33 0.33 0.36 0.66 0.66
r Type I	Outside Dia	Over 50 to 95 Over 95 to 115 mm, incl mm incl Wall The		hickness To	+1	0.00 0.008 0
lerance fo				Wall T	11	
Thickness Tolerance for Type I (A.W.H.R.) Round Tubing (SI Units)	talo			ınd	arr	0.0000000000000000000000000000000000000
=				11	0.28 0.30 0.30 0.30 0.33 0.33 0.33 0.33 0.3	
TABLE 7 Wa				+1	0.08 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.13	
	Over 25 to 50 mm, incl		5 to 50 incl		11	0.25 0.28 0.28 0.28 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.18 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3
			+1	0.10 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 1.		
		20 to 25 mm, incl		11	0.23 0.25 0.25 0.25 0.25 0.01 1	
		20 t		+1	0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	
		Wall Thickness	mm		1.65 0.13 0.23 0.10 0.25 0.08 0.28 1.83 0.13 0.23 0.10 0.25 0.08 0.02 2.41 0.15 0.25 0.13 0.28 0.10 0.30 2.41 0.15 0.25 0.13 0.28 0.10 0.30 3.40 0.15 0.25 0.13 0.28 0.10 0.30 3.40 0.15 0.25 0.13 0.28 0.10 0.30 3.76 0.15 0.01 0.13 0.28 0.10 0.33 4.19 0.15 0.01 0.15 0.30 0.13 0.33 5.16 0.16 0.30 0.13 0.33 6.05 0.16 0.30 0.13 6.05 0.30 0.13 6.05	

https://standards.iteh.ai/