Standard Specification for Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing ${ }^{1}$

This standard is issued under the fixed designation A513/A513M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification covers electric-resistance-welded carbon and alloy steel tubing for use as mechanical tubing.
1.2 This specification covers mechanical tubing made from hot- or cold-rolled steel.
1.3 This specification covers round, square, rectangular, and special shape tubing.

Type	Size Range (Round Tubing)
Electric-Resistance-Welded Tubing	outside diameter from $1 / 2$
from Hot Rolled Steet	-to 15 in . (19.0 $10-381.0 \mathrm{~mm}$)
Electric-Resistance-Welded Tubing	outside diameter from $1 / 2$ to 15 in .
from Hot-Rolled Steel	[10 to 380 mm]
	Wall from 0.065 to 0.650 in . (1.65 to 16.50 mm)
	wall from 0.065 to 0.650 in .
Electric-Resistance-Welded Tubing	outside diameter from $3 / 8$ to 12 in .
from-Gold-Rolled Steet	($0.92 \mathrm{to}-304.8 \mathrm{~mm}$)
Electric-Resistance-Welded Tubing	outside diameter from $3 / 8$ to 12 in .
from Cold-Rolled Steel	[9.5 to 305 mm]
	Wall from 0.022 to 0.134 in . (0.74 $-10.3 .40 \mathrm{~mm})$
	wall from 0.022 to 0.134 in .
	[0.56 to 3.40 mm]

1.4 Optional supplementary requirements are provided and when desired, shall be so stated in the order.
1.5The values stated in ineh-pound units are to be regarded as standard. The values given in parentheses are mathematieal eonversions to SI units that are provided for information only and are not considered standard.
1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the SI units are shown in brackets or parenthesis. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound unts shall apply unless the "M" designation of this specification is specified in the order. In this specification hard or rationalized conversions apply to diameters, lengths and tensile properties. Soft conversion applies to other SI measurements.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

A370 Test Methods and Definitions for Mechanical Testing of Steel Products
A700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Shipment
A1008/A1008M Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable
A1011/A1011M Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, HighStrength Low-Alloy with Improved Formability, and Ultra-High Strength
A1039/A1039M Specification for Steel, Sheet, Hot Rolled, Carbon, Commercial, Structural, and High-Strength Low-Alloy, Produced by Twin-Roll Casting Process

[^0][^1]A1040 Guide for Specifying Harmonized Standard Grade Compositions for Wrought Carbon, Low-Alloy, and Alloy Steels E1806 Practice for Sampling Steel and Iron for Determination of Chemical Composition
E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing
E273 Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing
E309 Practice for Eddy-Current Examination of Steel Tubular Products Using Magnetic Saturation
E570 Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products
2.2 ANSI Standard: ${ }^{3}$

B 46.1 Surface Texture
2.3 Military Standards: ${ }^{4}$

MIL-STD-129 Marking for Shipment and Storage
2.4 Federal Standard: ${ }^{4}$

Fed. Std. No. 123 Marking for Shipments (Civil Agencies)

3. Ordering Information

3.1 Orders for material under this specification should include the following as required to adequately describe the desired material:

- 3.1.1 Quantity (feet, metres, or number of lengths),
3.1.2 Name of material (electric resistance-welded carbon or alloy steel mechanical tubing),
3.1.3 Types, conditions and code letters, (See Sections 1 and 12),
3.1.4 Thermal condition, (See 12.2),
3.1.5 Flash condition, (See 12.3),
3.1.6 Grade designation, if required, (See Section 5),
3.1.7 Report chemical analysis and product analysis, if required (See Sections 6 and 7),
3.1.8 Individual supplementary requirements, if required (S1 to S10, inclusive),
3.1.9 Cross section (round, square, rectangular and special shapes),
3.1.10 Dimensions, round, outside and inside and wall thickness (See 8.1 and 8.2) or square and rectangular, outside dimension and wall thickness and corner radii, if required (See 9.1 and 9.2),
3.1.11 Length, round, mill lengths or definite cut length (See 8.3), square and rectangular, specified length (See 9.4),
3.1.12 Squareness of cut, round tubing, if required, (See 8.4),
3.1.13 Burrs removed, if required (See 11.2),
3.1.14 Protective coating (See 14.1),
3.1.15 Special packaging (See 17.1),
3.1.16 Specification designation,
3.1.17 End use,
3.1.18 Special requirements,
3.1.19 Special marking (See Section 16), and
3.1.20 Straightness Test Method (See 8.5 and 9.6).

[^2]
TABLE 1 Chemical Requirements for Standard Low-Carbon Steels ${ }^{A}$

Note 1- Chemistry represents heat analysis. Product analysis, except for rimmed or capped steel, is to be in accordance with usual practice as shown in Table 3.

Grade Designation	Carbon	Manganese	Phosphorus, max	Sulfur, max
				0.035
	$0.02-0.15$	$0.30-0.60$	0.035	0.035
MT 1015 $_{\text {MT X 1015 }}$	$0.10-0.20$	$0.30-0.60$	0.035	0.035
MT 1020	$0.10-0.20$	$0.60-0.90$	0.035	0.035
MT X 1020	$0.15-0.25$	$0.30-0.60$	0.035	0.035

[^3]
4. Materials and Manufacture

4.1 The steel may be made by any process.
4.2 If a specific type of melting is required by the purchaser, it shall be as stated on the purchase order.
4.3 The primary melting may incorporate separate degassing or refining, and may be followed by secondary melting, such as electroslag or vacuum-arc remelting. If secondary melting is employed, the heat shall be defined as all of the ingots remelted from a single primary heat.
4.4 Steel may be cast in ingots or may be strand cast. When steel of different grades is sequentially strand cast, identification of the resultant transition material is required. The producer shall remove the transition material by an established procedure that positively separates the grades.
4.5 Tubes shall be made by the electric-resistance-welded process and shall be made from hot- or cold-rolled steel as specified.

5. Chemical Composition

5.1 The steel shall conform to the requirements as to chemical composition prescribed in Table 1 or Table 2 (See Specification A1040). If no grade is specified, Grades MT 1010 to MT 1020 may be furnished. Analyses of steels other than those listed are available. To determine their availability, the purchaser should contact the producer.
5.2 When a carbon steel grade is ordered under this specification, supplying an alloy grade that specifically requires the addition of any element other than those listed for the ordered grade in Tables 1 and 2 is not permitted.
5.3 Mechanical tubing with improved ductility may be produced from Drawing Steel (Types A and B), Deep Drawing Steel, or Extra Deep Drawing Steels identified in Specifications A1008/A1008M, A1011/A1011M, or A1039/A1039M. Those Specifications offer guidance in the form of nonmandatory Typical Ranges of Mechanical Properties.

6. Heat Analysis

6.1 An analysis of each heat of steel shall be made by the steel manufacturer to determine the percentages of the elements specified; if secondary melting processes are employed, the heat analysis shall be obtained from one remelted ingot or the product of one remelted ingot of each primary melt. The heat analysis shall conform to the requirements specified, except that where the heat identity has not been maintained or where the analysis is not sufficiently complete to permit conformance to be determined,

TABLE 2 Chemical Requirements for Other Carbon and Alloy Steels ${ }^{A}$

Note 1—Chemistry represents heat analysis. Product analysis, except for rimmed or capped steel, is to be in accordance with usual practice as shown in Table 3.

Grade Designation	Chemical Composition Limits, \%							
	Carbon	Manganese	Phosphorus, max	Sulfur, max	Silicon	Nickel	Chromium	Molybdenum
1008	0.10 max	0.50 max	0.035	0.035
1009	0.15 max	0.60 max	0.035	0.035
1010	0.08-0.13	0.30-0.60	0.035	0.035
1012	0.10-0.15	0.30-0.60	0.035	0.035
1015	0.13-0.18	0.30-0.60	0.035	0.035
1016	0.13-0.18	0.60-0.90	0.035	0.035	\ldots
1017	0.15-0.20	0.30-0.60	0.035	0.035
1018	0.15-0.20	0.60-0.90	0.035	0.035
1019	0.15-0.20	0.70-1.00	0.035	0.035
1020	0.18-0.23	0.30-0.60	0.035	0.035
1021	0.18-0.23	0.60-0.90	0.035	0.035
1022	0.18-0.23	0.70-1.00	0.035	0.035
1023	0.20-0.25	0.30-0.60	0.035	0.035
1024	0.18-0.25	1.30-1.65	0.035	0.035
1025	0.22-0.28	0.30-0.60	0.035	0.035
1026	0.22-0.28	0.60-0.90	0.035	0.035
1027	0.22-0.29	1.20-1.55	0.035	0.035
1030	0.28-0.34	0.60-0.90	0.035	0.035
1033	0.30-0.36	0.70-1.00	0.035	0.035
1035	0.32-0.38	0.60-0.90	0.035	0.035
1040	0.37-0.44	0.60-0.90	0.040	0.050
1050	0.48-0.55	0.60-0.90	0.040	0.050
1060	0.55-0.65	0.60-0.90	0.040	0.050	\ldots
1340	0.38-0.43	1.60-1.90	0.035	0.040	0.15-0.35
1524	0.19-0.25	1.35-1.65	0.040	0.050	\ldots
4118	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35	...	0.40-0.60	0.08-0.15
4130	0.28-0.33	0.40-0.60	0.035	0.040	0.15-0.35	...	0.80-1.10	0.15-0.25
4140	0.38-0.43	0.75-1.00	0.035	0.040	0.15-0.35	\ldots	0.80-1.10	0.15-0.25
5130	0.28-0.33	0.70-0.90	0.035	0.040	0.15-0.35	\ldots	0.80-1.10	...
8620	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25
8630	0.28-0.33	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25

[^4]the chemical composition determined from a product analysis made by the tubular manufacturer shall conform to the requirements specified for heat analysis. When requested in the order or contract, a report of such analysis shall be furnished to the purchaser.

7. Product Analysis

7.1 When requested on the purchase order, a product analysis shall be made by the supplier. The number and source of samples for such product analysis shall be based on the individual heat or lot identity of one of the following forms of material:
7.1.1 Heat Identity Maintained-One product analysis per heat shall be made on either the flat-rolled stock or tube.
7.1.2 Heat Identity Not Maintained -A product from one tube per $2000 \mathrm{ft}(610 \mathrm{~m})[600 \mathrm{~m}]$ or less for sizes over 3 in . $(76.2$ $\mathrm{mm}),[75 \mathrm{~mm}]$, and one tube per $5000 \mathrm{ft}(150 \mathrm{~m})[1500 \mathrm{~m}]$ or less for sizes 3 in . [75 mm] and under.
7.2 Samples for product analysis except for spectrochemical analysis shall be taken in accordance with Practice E1806. The - composition thus determined shall correspond to the requirements of Tables 1-3Tables 1 and 2 .
7.3 If the original test for product analysis fails, retests of two additional lengths of flat-rolled stock or tubes shall be made. Both retests for the elements in question shall meet the requirements of the specification; otherwise, all remaining material in the heat or lot shall be rejected or, at the option of the producer, each length of flat-rolled stock or tube may be individually tested for acceptance. Lengths of flat-rolled stock or tubes which do not meet the requirements of the specification shall be rejected.

8. Permissible Variations in Dimensions for Round Tubing

8.1 Diameter and Wall Thickness (Hot-Rolled Steel)-Variations from specified outside diameter for "as-welded" and "as-welded and annealed" tubing made from hot-rolled steel shall not exceed the amounts prescribed in Table 4. Permissible variations in outside diameter for tubing that has been sink-drawn for closer tolerance on outside diameter are shown in Table 5 . Permissible variations in wall thickness for tubing that has been sink-drawn for closer tolerances on outside diameters are $\pm 10 \%$ of the nominal wall or $\pm 0.010 \mathrm{in}$. (0.25 mm), whichever is greater. Permissible variations in wall thickness for tubing made from
| hot-rolled steel are shown in Fable 6Tables 6 and 7. Permissible variation in outside and inside diameter for tubing made from hot-rolled steel that has been Drawn Over a Mandrel (DOM) for closer tolerances are shown in Table 5 with wall tolerances shown

- in Fable 7 Tables 8 and 9.
8.2 Diameter and Wall Thickness (Cold-Rolled Steel)—Variations in outside diameter and inside diameter of "as-welded" and "as-welded and annealed" tubing made from cold-rolled steel are shown in Fable 8Table 10. Outside diameter tolerances for cold-rolled steel tubing, sink drawn and DOM, are shown in Table 5. Wall thickness tolerances for" as-welded" tubing made from cold-rolled steel are shown in Ғable 9 Tables 11 and 12. Permissible variations in wall thickness for round tubing, DOM for closer tolerances, are shown in Fable 7 Tables 8 and 9 . Permissible variations in wall thickness for tubing that has been sink-drawn for closer tolerances on outside diameter are $\pm 10 \%$ of the nominal wall or $\pm 0.010 \mathrm{in}$. (0.25 mm), whichever is greater.
8.3 Length (Hot- and Cold-Rolled Steel)-Mechanical tubing is commonly furnished in mill lengths $5 \mathrm{ft}(1.5 \mathrm{~m}$) and over. Definite cut lengths are furnished when specified by the purchaser. Tolerances for definite cut lengths round tubing shall be as given I in Fables 10 and Tables 13 and 414 .
8.4 Squareness of Cut (Hot- and Cold-Rolled Steel)-When specified, tolerance for squareness of cut of round tubing shall be - as given in Fable 12 Table 15. Measurements are made with use of an "L" square and feeler gage. Side gauge. The long leg (blade)

TABLE 3 Tolerances for Product Analysis for Steels Shown in Tables 1 and $2^{A, B}$

Element	Limit, or Maximum of Specified Range, \%	Variation, Over the Maximum Limit or Under the Minimum Limit	
		Under min, \%	$\begin{aligned} & \text { Over max, } \\ & \% \end{aligned}$
Carbon	to 0.15 , incl	0.02	0.03
	over 0.15 to 0.40 , incl	0.03	0.04
	over 0.40 to 0.55 , incl	0.03	0.05
Manganese	to 0.60 , incl	0.03	0.03
	over 0.60 to 1.15 , incl	0.04	0.04
	over 1.15 to 1.65 , incl	0.05	0.05
Phosphorus		...	0.01
Sulfur		...	0.01
Silicon	to 0.30 , incl	0.02	0.03
	over 0.30 to 0.60	0.05	0.05
Nickel	to 1.00 , incl	0.03	0.03
Chromium	to 0.90 , incl	0.03	0.03
	over 0.90 to 2.10 , incl	0.05	0.05
Molybdenum	to 0.20, incl	0.01	0.01
	over 0.20 to 0.40 , incl	0.02	0.02

[^5]TABLE 4 Diameter Tolerances for Type I (A.W.H.R.) Round Tubing
Nоте- 4 -Measurements for diameter are to be taken at least 2 in.A $[50 \mathrm{~mm}]$ from the ends of the tubes.

Outside Diameter Range, in. ${ }^{A}$ in. [mm]	Wall Thickness		-	Flash-inTubing ${ }^{B A, G B}$				
	Bwg ${ }^{\text {FE }}$	in.A	$\begin{gathered} - \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Outside Diameter, \pm	Outside Diameter, \pm	Outside Diameter, \pm	Inside Diameter, \pm	
				Tolerances, in. ${ }^{\text {AF,G }}$				
			in. (mm)	in. (mm)	in. (mm)	in. (mm)		
1/2 to $11 / 8$, incl	46	+0-10	0.065 to0.134	-	-0.0035	-0.0035	-0.00350.020	
$\underline{1 / 2}$ to $11 / 8$, incl [15 to 30]	16 to 10	$\underline{0.065 ~ t o ~} 0.134$ (1.7 to 3.4)	0.0035 (0.09)	0.0035 (0.09	0.0035 (0.09)	0.02035	- (0.51)	
Over 11/8 to 2, incl	46	to14	0.065 to0.083		0.005	0.005	0.0050 .021	
Over 11/8 to 2, incl [30 to 50]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	$0.005(0.13)$	0.005 (0.13)	0.005 (0.13)	$0.021(05$	$\theta .53)$	
Over $11 / 8$ to 2 , ind	43	107	0.095100 .180		0.005	0.0050 .005	0.025	
Over 11/8 to 2, incl [30 to 50]	13 to 7	$\underline{0.095}$ to 0.180 (2.4 to 4.6)	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	0.025 (0.005	0.02564)	
Over $11 / 8$ to 2, incl	6	to5	0.203 t00.220		0.005	0.005	0.005	0.029
Over 11/8 to 2, incl [30 to 50]	6 to 5	0.203 to 0.220 (5.2 to 5.6)	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	0.005	0.005	0.029 (0.74)
Over $11 / 8$ to 2, ind	4	-103	$0.238-100.259$		0.005	0.005 .99		
Over 11/8 to 2, incl [30 to 50]	4 to 3	$\underline{0.238 ~ t o ~} 0.259$ (6.0 to 6.6)	$0.005(0.13)$	$\underline{0.005(0.13)}$	0.005 (0.13)	0.039 (0.99)		
	0.005	0.039						
		0.039						
Over 2 to $21 / 2$, inct	16	to14	0.065 to0.083	-	0.006	0.006	0.0060.022	
Over 2 to $21 / 2$, incl [50 to 65]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	0.006 (0.15)	0.006 (0.15)	0.006 (0.15)	$0.022(06$	Q.56)	
Over 2 to 21/2, ind	43	to 0	$0.095+00.220$		0.006	0.006	ө.0060.024	
Over 2 to $21 / 2$, incl [50 to 65]	13 to 5	0.095 to 0.220 (2.4 to 5.6)	0.006 (0.15)	0.006 (0.15)	0.006 (0.15)	0.024 (06	Q.61)	
Over 2 to $21 / 2$, inct	4	to 3	0.238 to0.259		0.006	0.006	$\theta .006$	0.040
Over 2 to $21 / 2$, incl [50 to 65]	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.006 (0.15)	0.006 (0.15)	0.006 (0.15)	0.0406	$\theta(1.006$	0.0402)
Over 21/2 $10-3$, ind	46	+014	0.065100 .083		0.008	0.008	0.008	0.024
Over $21 / 2$ to 3, incl [65 to 75]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	$0.008(0.20)$	0.008 (0.20)	0.008 (0.20)	0.008	0.008	0.024 (0.61)
Over 21/2 to 3, ind	43	+0.5	$0.095+00.220$		0.008	0.008	$\theta .008$	0.026
Over $21 / 2$ to 3, incl [65 to 75]	13 to 5	0.095 to 0.220 (2.4 to 5.6)	$0.008(0.20)$	$0.008(0.20)$	$0.008(0.20)$	0.026108	$\theta .008$	0.0266)
Over $21 / 2$ to -3, ind	4	+0-3	$0.238-100.259$		0.008	0.008	$\theta .008$	0.040
Over $21 / 2$ to 3, incl [65 to 75]	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.008 (0.20)	0.008 (0.20)	0.008 (0.20)	0.0408	$\theta(1.008$	0.0402)
Over 21/2 to -3, inct	z	+0-0.320	0.284100 .320		0.010	0.010.22)		
Over $2 \underline{1} / 2$ to 3 , incl [65 to 75]	2 to 0.320 [8.1]	0.284 to 0.320 (7.2 to 8.1)	0.010 (0.25)	0.010 (0.25)	0.010 (0.25)	0.048 (1.22)		
	0.010	0.048						
		0.048						
Over 3 to $31 / 2$, inet	46	to14	$0.065+00.083$		0.009	0.009	0.009	0.025
Over 3 to $31 / 2$, incl [75 to 90]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	0.009 (0.23)	0.009 (0.23)	0.009 (0.23)	0.009	0.009	0.025 (0.64)
Over 3 to $31 / 2$, ind	43	+0-5	$0.095+00.220$		0.009	0.009	ө.0090.027	
Over 3 to $31 / 2$, incl [75 to 90]	13 to 5	0.095 to 0.220 (2.4 to 5.6)	$0.009(0.23)$	$0.009(0.23)$	0.009 (0.23)	0.027 (09	$\theta .69$)	
Over 3 to $31 / 2$, inct	4	+0.3	0.238 to0.259		0.009	0.009	Q.0090.043	
Over 3 to $31 / 2$, incl [75 to 90]	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.009 (0.23)	0.009 (0.23)	0.009 (0.23)	0.009	043 (1.09)	
Over 3to $31 / 2$, inet	z	+0-0.360	0.284100 .360		0.012	$0.0127)$		
Over 3 to $31 / 2$, incl [75 to 90]	2 to 0.360 [9.1]	0.284 to 0.360 (7.2 to 9.1)	$0.012(0.30)$	$0.012(0.30)$	0.012 (0.30)	0.050 (1.27)		
	0.012	0.050						
		0.050						
Qver $31 / 2$ to -4, inct	46	+014	0.065 t00.083		0.010	0.0100 .010	0.026	
Over $311 / 2$ to 4, incl [90 to 100]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	0.010 (0.25)	0.010 (0.25)	0.010 (0.25)	0.026 (0.010	$0.0266)$	
Over $31 / 2$ to - 4 , ind	43	+0-5	$0.095+00.220$		0.010	0.0100 .010	0.028	
Over $31 / 2$ to 4, incl [90 to 100]	13 to 5	0.095 to 0.220 (2.4 to 5.6)	0.010 (0.25)	0.010 (0.25)	0.010 (0.25)	0.02810 .010	$0.072)$	
Over $31 / 2$ to - 4 , inct	4	+0.3	0.238-00.259		0.010	0.010	$\theta .010$	0.044
Over $31 / 2$ to 4, incl [90 to 100]] to 3	0.238 to 0.259 (6.0 to 6.6)	0.010 (0.25)	$\underline{0.010(0.25)}$	0.010 (0.25)	0.044 (10	0.10	0.0442)
Over $31 / 2$ to - , ind	z	+0 0.500	$0.284+00.500$		0.015	$0.015)$		
Over $31 / 2$ to 4 , incl [90 to 100]	[0.015]0.284 to 0.500 (7.2 to 12.7))0.015 (0.38)	0.015 (0.38)	0.015 (0.38)	0.053 (1.35)		
		0.053						
		0.053						
Qver 4-to -5, inet	46	-						
t014	0.065 t0-0.083	-	0.020	0.020	0.020	0.036		
Over 4 to 5, incl [100 to 130]	16 to 14	0.065 to 0.083 (1.7 to 2.1)	0.020 (0.51)	0.020 (0.51)	$0.020(0.51)$	0.036 (0.91)		
Over 4 to -5, ind	43	to 5	$0.095+0.0 .220$		0.020	0.0245 (1.14)		
Over 4 to 5, incl [100 to 130]	13 to 5	0.095 to 0.220 (2.4 to 5.6)	0.020 (0.51)	0.020 (0.51)	0.020 (0.51)	0.045 (1.14)		
Over 4-to-5, incl [10	0.020	0.0450 ver 4 to 5 , inet	4	± 03	0.238-00.259	$0.054(1.37)$		
Over 4 to 5, incl [100 to130]	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.020 (0.51)	0.020 (0.51)	0.020 (0.51)	0.054 (1.37)		
Over 4 to 5, incl [100 to 130]	0.020	0.020	0.020	0.054				
Over 4 to 5, incl [100 to 130]	2 to 0.500 [12.7]]0.284 to 0.500 (7.2 to 12.7))0.020 (0.51)	0.020 (0.54				
Over 4 to 5 , inet	$\underline{2}$	to0.50058 (1.47)						

TABLE 4 Continued

Outside Diameter Range, in. ${ }^{A}$ in. [mm]	Wall Thickness			Flash-inTubing ${ }^{B A, G B}$	$\begin{aligned} & \text { Flash-Gontrolled- } \\ & \text { Co- } 0.010 \text { in-maxtro } \\ & \text { to } 0.010 \mathrm{in} . \\ & \frac{(0.26 \mathrm{~mm}) \mathrm{max}}{\text { Tubing }{ }^{6 B, B C}} \end{aligned}$	Flash Controlle to 0.005 in. ma $\frac{(0.13 \mathrm{~mm}) . \mathrm{ma}}{\text { Tubing }{ }^{E=C, D}}$				
	Bwg ${ }^{\text {FE }}$	in.A	$\begin{gathered} - \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Outside Diameter, \pm	Outside Diameter, \pm	Outside Diameter, \pm	Inside Diameter, \pm			
				Tolerances, in. $\stackrel{A F, G}{ }$						
			in. (mm)	in. (mm)	in. (mm)	in. (mm)				
Over 4 to 5, incl1)	$\frac{0.020(0.51)}{0.284+0.0 .500}$	0.058 (1.47)	0.020	0.020	0.020	0.058				
Over 5 to 6, incl [130 to 150]	16 to 10	0.065 to 0.134 (1.7 to 3.4)	$0.020(0.51)$							
Qvers to -6, ind	46	0.036 (0.91)								
$0.020(0.51)$	0.020 (0.51)	0.036 (0.91)								
Over 5 to10	0.065 to 0.134	-	0.020	0.020	0.020	0.036				
Over 5 to 6, incl [130 to 150]	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.020 (0.51)	0.020 (0.51)	0.020 (0.51)	0.040 (10.02)				
Qver 5 to 6 , ind	9	+05	$0.148+0.2220$		0.020	0.0254 (1.37)				
Over 5 to 6 incl [130 to 150]	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.020 (0.51)	0.020 (0.51)	0.020 (0.51)	0.054 (1.37)				
Over 5-6-6, ind [130	0.020	0.04-00vers to 6 inel	4	+0.3	0.238+00.259					
Over 5 to 6, incl [130 to 150]	2 to 0.500 [12.7]	0.284 to 0.500 (7.2 to 12.7)	0.020 (0.51)	0.020 (0.51)	0.020 (0.51)	0.058 (1.47)				
	0.020	0.020	0.020	$\begin{aligned} & 0.054 \\ & 0.054 \end{aligned}$						
Over 5 to 6 , incl										
\#0.0.500	0.284 to 0.500		0.020	0.020	0.020	0.058				
Over 6 to 8, incl [150 to 200]	11 to 10	$\underline{0.120 ~ t o ~} 0.134$ (3.0 to 3.4)	0.025 (0.64)	0.025 (0.64)	0.025 (0.64)	0.043 (1.09)				
Over 6 to 8, incl [150 to 200]	9 to 5	0.148 to 0.220 (3.8 to 5.6)	0.025 (0.64)							
Over6 to 8, incl	41	0.045 (1.14)								
0.025 (0.64)	0.025 (0.64)	0.045 (1.14)								
Over 6.010	$0.120+0.0 .134$	0.238 to 0.259 (6.0 to 6.6)	0.025	0.025	0.025	0.043				
Over 6 to 8, incl [150 to 200]	4 to 3		0.025 (0.64)	0.025 (0.64)	0.025 (0.64)	0.059 (1.50)				
Over 6 to 8, inel	9	+05	$0.148+00.228$		0.025	0.02563 (1.60)				
Over 6 to 8, incl [150 to 200]	2 to 0.500 [12.7]0.284 to 0.500 (7.2 to 12.7)0.025 (0.64)			0.025 (0.64)	0.025 (0.64)	0.063 (1.60)				
	0.025	$\begin{aligned} & 0.045 \\ & 0.045 \end{aligned}$								
Over 6 to-8, inet	$\underline{4}$	to 3	0.238 to 0.259							
Over 6 to 8, incl										
Over 8 to -10, incl [200 to 2501	0.025	0.025	0.025	0.059						
$\frac{\text { Over } 8 \text { to } 10, \text { incl [200 to }}{250]}$	14 to 12	0.083 to 0.109 (2.1 to 2.8)	0.030 (0.76)	0.059						
Over6 to 8, incl Over30 (0.76)	$\begin{aligned} & \underline{2} \\ & \underline{0} 0.030(0.76) \\ & \hline \end{aligned}$	0.041 (1.04)								
Over $8 \uparrow$ 0.500	0.284 to 0.500	0.041 (1.04)	0.025	0.025	0.025	0.063				
Over 8 to 10, incl [200 to 250]	11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.030 (0.76)	0.030 (0.76)	0.030 (0.76)	0.043 (1.09)				
Over 8 to 10, incl [200 to	9 to 5	0.148 to 0.220 (3.8 to 5.6$)$	$0.030(0.76)$	$0.030(0.76)$	$0.030(0.76)$	0.045 (1.14)				
250]										
Qver 8 to-10, inet	44	to 12	$0.083+00.109$		0.030	0.030	0.030	$\theta .041$		
Over 8 to 10, incl [200 to	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.030 (0.76)		0.030 (0.76)	$0.030(0.76)$	$\underline{0.030}$	$\theta 59$ (1.50)		
250]										
Qver 8-10-10, inet	47	to 10	$0.120+00.134$		0.030	0.030	0.030	$\theta .043$		
Over 8 to 10, incl [200 to	$\underline{2}$ to $0.500[12.7] 0.248$ to 0.500 (7.2 to 12.7)		0.030 (0.76)		0.030 (0.76)	$0.030(0.76)$	$\underline{0.0630}$	$\theta(1.60)$		
250]										
Qver 8-10-10, inct	9	+0-5	0.148 to 0.220		0.030	0.030	0.030	0.045		
							0.030	0.045		
Over 8 to 10, inct	4	to 3	0.238 to0.259		0.030	0.030	0.030	0.059		
Over 10 to 12, incl [250 to	14 to 12	0.083 to 0.109 (2.1 to 2.8)	0.035 (0.89)		0.035 (0.89)	0.035 (0.89)	0.030	$\theta 41$ (1.04)		
300]										
Over 8 to 10, inct	z	to 0.500	0.248 t00.500		0.030	0.030	0.030	$\theta .063$		
Over 10 to 12, incl [250 to	11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.035 (0.89)		0.035 (0.89)	0.035 (0.89)	$\underline{0.0430}$	θ (1.09)		
300]										
Over 10 to 12, incl [250 to	9 to 5	$\underline{0.148 \text { to } 0.220(3.8 \text { to 5.6) }}$	0.035 (0.89)	0.035 (0.89)	$0.035(0.89)$	0.045 (1.14)				
300] \quad - 0 - 0.035										
Over 10 to-12, inel	44	to 12	$0.083+00.109$		0.035	0.035	0.0350 .044			
Over 10 to 12, incl [250 to	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.035 (0.89)		0.035 (0.89)	0.035 (0.89)	0.059 (1.50)			
300]		+010								
Qver 10 to 12, inel	47		$0.120+00.134$		0.035	0.035	0.035	$\theta .043$		

TABLE 4 Continued

Outside Diameter Range, in. ${ }^{A}$ in. [mm]	Wall Thickness			Flash-inTubing ${ }^{B A, G B}$	Flash-Gontrolled Co-0.010 in-maxtro to 0.010 in . $\frac{(0.26 \mathrm{~mm}) \max }{\text { Tubing }{ }^{6 B, B C}}$	Flash Controlle to 0.005 in. $(0.13 \mathrm{~mm})$. max Tubing ${ }^{E C, C}$		
		in.A	$\begin{gathered} - \\ (\mathrm{mm}) \end{gathered}$	Outside Diameter, \pm	Outside Diameter, \pm	Outside Diameter, \pm	Inside Diameter, \pm	
				Tolerances, in. ${ }^{\text {AF,G }}$				
			in. (mm)	in. (mm)	in. (mm)	in. (mm)		
Over 10 to 12, incl [250 to	2 to 0.500 [12.7]0.284 to 0.500 (7.2 to 12.7)0.035 (0.89)				0.035 (0.89)	0.035 (0.89)	$\underline{0.0635}$	$\theta(1.60)$
300]								
Over 10 to 12, inct	9	+0-5	$0.148+0.220$		0.035	0.035	0.035	0.045
							0.035	
Over 10 to 12, inct	4	+0.3	0.238100 .259		0.035	0.035	0.0350 .059	
Over 12 to 15, incl [300 to	14 to 12	0.083 to 0.109 (2.1 to 2.8)	0.040 (1.02)		0.040 (1.02)	0.040 (1.02)	0.058 (1.47)	
380] - - - - - - -								
Over 10 to 12, inct	z	to 0.500	$0.284+00.500$		0.035	0.0358 (1.47)		
Over 12 to 15, incl [300 to	11 to 10	0.120 to 0.134 (3.0 to 3.4)	0.040 (1.02)	0.040 (1.02)	0.040 (1.02)	0.058 (1.47)		
Over 12 to 15, incl [300 to	0.035	0.063						
3801								
380]								
Over 12 to 15, inet	44	to 12	$0.083+00.109$		0.040	0.040	$\theta .040$	0.058
Over 12 to 15, incl [300 to	4 to 3	0.238 to 0.259 (6.0 to 6.6)	0.040 (1.02)	0.040 (1.02)	0.040 (1.02)	$\underline{0.0740}$	θ (1.040	0.0588)
380]								
Over 12 to 15, inct	44	to 10	$0.120+0.134$		0.040	0.040	0.040	0.058
Over 12 to 15, incl [300 to	2 to 0.50	7]0.284 to 0.500 (7.2 to 12.7) 0.120 to 0.134		0.040	0.040	0.040	0.058
380]								
Over 12 to -15, inct		9 to 5	$0.14810-0.220$		0.040	0.040	0.040	0.060
Over 12 to 15, incl		$9 \overline{0.040}$ (1.02)	0.148 to 0.220		0.040	0.040	0.040	0.060
Over 12 to 15, ind		4 to 3	0.238 to 0.259		0.040	0.040	0.040	0.074
Over 12 to 15, incl		$4 \overline{0.040}$ (1.02)	0.238 to 0.259		0.040	0.040	0.040	0.074
Over 12 to-15, ind		z to0.500	0.284 to0.500		0.040	0.040	0.040	0.086
Over 12 to 15, incl		$\underline{20.040(1.02)}$	0.0.500		0.040	0.040	0.040	0.086 (2.18)

${ }^{\text {A }}$ fFlash-In-Tubing is produced only to outside diameter tolerances and wall thickness tolerances and the inside diameter welding flash does not exceed the wall thickness or $3 / 32 \mathrm{in} .=(25.4 \mathrm{~mm})$, whichever is less.
${ }^{B}$ Flash+Con-Ftrolled to 0.010 in . $(0.25 \mathrm{~mm})$ maximum tubing consists of tubing which is commonly produced only to outside diameter tolerances and wall thickness tolerances-a, ind which the-insid he-diameght of the remaining welding flash-d is controllesd not to exceed-the wall thickness or $3 / 32$ in 0 ., wh010 iehever is lessn.
${ }^{C}$ Flash Controlled to 0.0705 in. (0.13 mm) maximum tubing-cons ists of tubing which is commonly produced-only to outside diameters and wall thickness tolerance, inside diameter and wall thickness tolerances, or outside diameters and inside diameter tolerances, in which the height of the remaining-welding flash is controlled not to exceed 0.0705 in . Any remaining flash is considered to be part of the applicable inside diameter tolerances.
${ }^{D}$ No Flash tubing is further processed by DOM for closer tolerances, produced to outside diameter and wall, inside diameter and wall, or outside diameter and inside diameter, with no dimensional indication of inside diameter flash, and is available in Types 5 and 6.
E Flash Gontrolled to 0.005 Bin:rmaximum tubing-is produeed to outside diameters and wall thiekness toleranee, inside diameter and wall th Wiekness toleranees, of outside di Gameters and inside diameter tolerances, in which the heiught of the remaining flash is controlled not to exceed 0.005 in. Any remaining flash is considered to be part of the applieable inside diameter toleranees.
${ }^{\circ}$ Birmingham Wire Gage.
${ }^{\epsilon}$ The ovality shall be within the above tolerances except when the wall thickness is less than 3% of the outside diameter, in such cases see 8.6.1.

- of the square to be equal to tube diameter exeept plus a minimum length of 1 in . (25.4 mm) and maximum length of 4 in . (101.6 $\mathrm{mm})$. Outside diameter burr to be removed for measurement.
8.5 Straightness - The straightness tolerance for round tubing is $0.030 \mathrm{in} . / 3 \mathrm{ft}(0.76 \mathrm{~mm} / 1 \mathrm{~m})[0.75 \mathrm{~mm} / 1 \mathrm{~m}]$ lengths to 8.000 in. $(203 \mathrm{~mm})[200 \mathrm{~mm}]$ outside diameter. For 8.000 in . [200 mm] outside diameter and above, straightness tolerance is $0.060 \mathrm{in} . / 3$ $\mathrm{ft}(1.52[1.5 \mathrm{~mm} / 1 \mathrm{~m}) \mathrm{m}]$ lengths. For lengths under $1 \mathrm{ft}[305 \mathrm{~mm}]$ the straightness tolerance shall be agreed upon between the purchaser and producer. The test method for straightness measurement is at the manufacturer's option, unless a specific test method is specified in the purchase order.
8.6 Ovality (Hot- and Cold-Rolled Steel)-The ovality shall be within the tolerances except when the wall thickness is less than 3% of the outside diameter.
8.6.1 In such cases for Types 1 and 2 (A.W.H.R. and A.W.C.R.) the ovality may be 50% greater than the outside tolerances but the mean outside diameter shall be within the specified tolerance.
8.6.2 For Types 3, 4, 5, and 6 (S.D.H.R., S.D.C.R., DOM, and S.S.I.D.) the additional ovality shall be as follows but the mean outside diameter shall be within the specified tolerance:

TABLE 5 Diameter Tolerances for Types 3, 4, 5, and 6 (S.D.H.R., S.D.C.R., DOM, and S.S.I.D) Round Tubing

- Note-4-Measurements for diameter are to be taken at least $2 \mathrm{in} .[50 \mathrm{~mm}]$ from the ends of the tubes.

OD Size Range ${ }^{\text {A }}$ in. (mm)	$\begin{aligned} & \text { Wall- \% } \\ & \text { of OD } \end{aligned}$	Types 3, 4, (Sink Drawn) ${ }^{A, B}$ and $5,6,(\mathrm{DOM})^{B, C}$ OD, in.		Types 5 and 6 (DOM) ${ }^{B, C}$, ID in.	
		$\begin{gathered} \text { Over } \\ \text { in. }(\mathrm{mm}) \end{gathered}$	Under in. (mm)	$\begin{gathered} \text { Over } \\ \text { in. }(\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \hline \text { Under } \\ & \text { in. (mm } \end{aligned}$
Up to 0.499	-all	0.004	0.000	\cdots	\cdots
Up to 0.499	all	0.004	0.000	\ldots	\ldots
(12.67)		(0.10)	(0.00)		
0.500 to 1.699	-all	0.005	0.000	0.000	0.005
0.500 to 1.699	all	0.005	0.000	0.000	0.005
(12.70 to 43.15)		(0.13)	(0.00)	(0.00)	(0.13)
4.700 to 2.099	-all	0.006	0.000	0.000	0.006
1.700 to 2.099	all	0.006	0.000	0.000	0.006
(43.18 to 53.31)		(0.15)	(0.00)	(0.00)	(0.15)
2.100 to 2.499	-all	0.007	0.000	0.000	0.007
2.100 to 2.499	all	0.007	0.000	0.000	0.007
(53.34 to 63.47)		(0.18)	(0.00)	(0.00)	(0.18)
2.500 to 2.899	-all	0.008	0.000	0.000	0.008
2.500 to 2.899	all	0.008	0.000	0.000	0.008
(63.50 to 73.63)		(0.20)	(0.00)	(0.00)	(0.20)
2.900 to 3.299	-alt	0.009	0.000	0.000	0.009
2.900 to 3.299	all	0.009	0.000	0.000	0.009
(73.66 to 83.79)		(0.23)	(0.00)	(0.00)	(0.23)
3.300 to 3.699	all	$\theta .010$	0.000	0.000	0.010
3.300 to 3.699	all	0.010	0.000	0.000	0.010
(83.82 to 93.95)		(0.25)	(0.00)	(0.00)	(0.25)
3.700 to 4.099	-all	0.014	0.000	0.000	0.014
3.700 to 4.099	all	0.011	0.000	0.000	0.011
(93.98 to 104.11)		(0.28)	(0.00)	(0.00)	(0.28)
4.100 to 4.499	-all	0.012	0.000	0.000	0.012
4.100 to 4.499	all	0.012	0.000	0.000	0.012
(104.14 to 114.27)		(0.30)	(0.00)	(0.00)	(0.30)
4.500 to 4.899	all	0.013	0.000	0.000	0.013
4.500 to 4.899	all	0.013	0.000	0.000	0.013
(114.30 to 124.43)		(0.33)	(0.00)	(0.00)	(0.33)
4.900 to 5.299	-all	0.014	0.000	0.000	0.014
4.900 to 5.299	all	0.014	0.000	0.000	0.014
(124.46 to 134.59)		(0.36)	(0.00)	(0.00)	(0.36)
5.300 to 5.549	-all	0.015	0.000	0.000	0.015
5.300 to 5.549	all	0.015	0.000	0.000	0.015
(134.62 to 140.94)		(0.38)	(0.00)	(0.00)	(0.38)
5.550 to 5.999	under 6	0.010	0.010	0.010	0.010
5.550 to 5.999	$\underline{\text { under } 6}$	0.010	0.010	0.010	0.010
(140.97 to 152.37)		(0.25)	(0.25)	(0.25)	(0.25)
	6 G and over	0.009	0.009	0.009	0.009
-	6 and over	0.009	0.009	0.009	0.009
		(0.23)	(0.23)	(0.23)	(0.23)
6.000 to 6.499	under 6	0.013	0.013	0.013	$\theta .013$
6.000 to 6.499	$\underline{\text { under } 6}$	0.013	0.013	0.013	0.013
(152.40 to 165.07)		(0.33)	(0.33)	(0.33)	(0.33)
	6 G and	0.010	0.010	0.010	0.010
	6 and over	0.010	0.010	0.010	0.010
		(0.25)	(0.25)	(0.25)	(0.25)
6.500 to 6.09	under 6	0.015	0.015	0.015	0.015
6.500 to 6.999	$\underline{\text { under } 6}$	0.015	0.015	0.015	0.015
(165.10 to 177.77)		(0.38)	(0.38)	(0.38)	(0.38)
	6 and over	0.012	0.012	0.012	0.012
	6 and over	0.012	0.012	0.012	0.012
		(0.30)	(0.30)	(0.30)	(0.30)
$7.000+7.499$	undor 6	0.018	0.018	0.018	0.018
7.000 to 7.499	$\underline{\text { under } 6}$	0.018	0.018	0.018	0.018
(177.80 to 190.47)		(0.46)	(0.46)	(0.46)	(0.46)
	6 and over	0.013	0.013	0.013	0.013
	6 and over	0.013	0.013	0.013	0.013
		(0.33)	(0.33)	(0.33)	(0.33)
7.500 to 7.999	under 6	0.020	0.020	0.020	0.020
7.500 to 7.999	under 6	0.020	0.020	0.020	0.020
(190.50 to 203.17)		(0.51)	(0.51)	(0.51)	(0.51)
	G andrer	0.015	0.015	0.015	0.015
-	6 and over	0.015	0.015	0.015	0.015
		(0.38)	(0.38)	(0.38)	(0.38)
8.000 to 8.499	under 6	0.023	0.023	0.023	0.023
$\frac{8.000 \text { to } 8.499}{(203.20 \text { to } 215.87)}$	$\underline{\text { under } 6}$	$\frac{0.023}{(0.58)}$	$\frac{0.023}{(0.58)}$	$\frac{0.023}{(0.58)}$	$\frac{0.023}{(0.58)}$
	6 Candover	$\frac{0.016}{0.016}$	$\frac{0.016}{0.016}$	$\frac{0.016}{0.016}$	$\frac{0.016}{}$
-	6 and over	0.016	0.016	0.016	0.016
-		(0.41)	(0.41)	(0.41)	(0.41)
8.500 to 8.099	\rightarrow under 6	0.025	0.025	0.025	0.025
8.500 to 8.999	under 6	0.025	0.025	0.025	0.025
(215.90 to 228.57)		(0.64)	(0.66)	(0.66)	(0.64)
	6 and 6 and over	${ }^{0.017} 0.017$	0.017 0.017	0.017 0.017	0.017 0.017

TABLE 6 Wall Thickness Tolerance for Type I (A.W.H.R.) Round Tubing (Inch Units)

${ }^{6}$ Whrm the
A513/A513M - 12

${ }^{A}$ Where the ellipsis (...) appears in this table, the tolerance is not addressed.

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.09 on Carbon Steel Tubular Products.

 Current edition approved Өet.May 1, 2008-2012. Published Nember 2008-July 2012. Originally approved in 1964. Last previous edition approved in 2008 as A513 - 08. DOI: $10.1520 / \mathrm{A} 0513-88 \mathrm{~A} \cdot 10.1520 / \mathrm{A} 0513 _\mathrm{A} 0513 \mathrm{M}-12$.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service @ astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: *A Summary of Changes section appears at the end of this standard.
 Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

[^2]: ${ }^{3}$ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.
 ${ }^{4}$ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

[^3]: ${ }^{A}$ Rimmed or capped steels which may be used for the above grades are characterized by a lack of uniformity in their chemical composition, and for this reason product analysis is not technologically appropriate unless misapplication is clearly indicated.
 ${ }^{B}$ The letters MT under grade designation indicate Mechanical Tubing.

[^4]: ${ }^{A}$ Where the ellipsis (...) appears in this table, there is no requirement.

[^5]: ${ }^{A}$ Individual determinations may vary from the specified heat limits or ranges to the extent shown in this table, except that any element in a heat may not vary both above and below a specified range.
 ${ }^{B}$ Where the ellipsis (...) appears in this table, there is no requirement.

