INTERNATIONAL STANDARD

Third edition 2020-08

Metallic materials — Sheet and strip — Determination of tensile strain hardening exponent

Matériaux métalliques — Tôles et bandes — Détermination du coefficient d'écrouissage en traction

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10275:2020 https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-4ebc72e186fe/iso-10275-2020

Reference number ISO 10275:2020(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10275:2020 https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-4ebc72e186fe/iso-10275-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	ord	iv
Introd	uction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Symbols and designations	2
5	Principle	
6	Test equipment	
7	Test pieces	
8	Procedure	3
9	Test report	7
Annex	A (informative) International comparison of symbols used in the determination of the tensile strain hardening exponent	9
Bibliography		

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10275:2020 https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-4ebc72e186fe/iso-10275-2020

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 2, *Ductility testing*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 459, *ECISS* – *European Committee for Iron and Steel Standardization*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This third edition cancels and replaces the second edition (ISO 10275:2007), of which it constitutes a minor revision.

The main changes compared to the previous edition are as follows:

- <u>Clause 2</u> has been updated;
- new <u>Clause 3</u> "Terms and definitions" has been added as per the latest Directives, Part 2;
- the symbol for true plastic strain has been changed from ε to ε_{p} ;

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

In the previous edition of this document, for the calculation of the true strain, the elastic strain did not need to be subtracted from the total strain if it was lower than 10 % of the total strain.

In this document, the elastic strain is subtracted from the total strain for calculation of the true strain, which is now referred to as "true plastic strain".

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10275:2020 https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-4ebc72e186fe/iso-10275-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10275:2020 https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-4ebc72e186fe/iso-10275-2020

Metallic materials — Sheet and strip — Determination of tensile strain hardening exponent

1 Scope

This document specifies a method for determining the tensile strain hardening exponent n of flat products (sheet and strip) made of metallic materials.

The method is valid only for that part of the stress-strain curve in the plastic range where the curve is continuous and monotonic (see <u>8.4</u>).

In the case of materials with a serrated stress-strain curve in the work hardening range (materials which show the Portevin-Le Chatelier effect, e.g. AlMg-alloys), the automatic determination (linear regression of the logarithm true stress vs. the logarithm true plastic strain, see <u>8.7</u>) is used to give reproducible results.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature

ISO 7500-1, Metallic materials — Calibration and Verification of static uniaxial testing machines — Part 1: Tension/compression/testing/machines/ent-Calibration/and/Verification/of/the/force-measuring system 4ebc72e186fe/iso-10275-2020

ISO 9513, Metallic materials — Calibration of extensometer systems used in uniaxial testing

ISO 10113, Metallic materials — Sheet and strip — Determination of plastic strain ratio

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>

4 Symbols and designations

4.1 The symbols and corresponding designations used in determining the tensile strain hardening exponent are given in <u>Table 1</u>.

Symbol	Designation	Units			
L _e	Extensometer gauge length ($L_{\rm e}$)	mm			
ΔL	Instantaneous extension of the measurement base	mm			
L	Instantaneous length of the extension space length $L = L_e + \Delta L$	mm			
e_{p}	Specified plastic (engineering) strain at which the tensile strain hardening exponent should be determined (single data point method)	%			
$e_{p\alpha} - e_{p\beta}$ Specified plastic (engineering) strain range at which the tensile strain hardening exponent should be determined (linear regression method, $e_{p\alpha}$ = lower limit of the plastic strain in percent, $e_{p\beta}$ = upper limit of the plastic strain in percent)		%			
S _o	Original cross-sectional area of the parallel length	mm ²			
S	True cross-sectional area	mm ²			
F	Instantaneous force applied to the test piece	Ν			
R	Stress	МРа			
σ	True stress Teh STANDARD PREVIEW	МРа			
ε _p	True plastic strain	—			
m _E	Slope of the elastic part of the stress/percentage extension-curve	МРа			
n	Tensile strain hardening exponent	—			
С	Strength coefficient ISO 102/5:2020	МРа			
N	Number of measurements made in determining the tensile strain hardening exponent	—			
r	Plastic strain ratio	_			
R _m	Tensile strength	МРа			
A _e	Percentage yield point extension	%			
A _g	Percentage plastic extension at maximum force	%			
A, B, x, y	Variables used for the evaluation of <i>n</i> by the manual method				
NOTE 1 In the literature, the readers can encounter other symbols. For an international comparison of symbols, see Annex A. NOTE 2 1 MPa = 1 N/mm^2 .					

Table 1	- Symbols	and designations
---------	-----------	------------------

4.2 The tensile strain hardening exponent *n* is defined as the exponent of the true plastic strain in the mathematical equation relating the true stress to the true plastic strain (during uniaxial application of a force). This can be taken as Formula (1):

$$\sigma = C \cdot \varepsilon_p^n$$

(1)

(2)

4.3 Formula (1) can be transformed into a logarithmic one as Formula (2):

$$\ln \sigma = \ln C + n \cdot \ln \varepsilon_{\rm p}$$

The strain hardening exponent in the logarithmic system of coordinates is defined as the slope of the corresponding straight line.

5 Principle

A test piece is subjected to uniaxial tensile strain at a prescribed constant rate within the region of uniform plastic strain. The tensile strain hardening exponent n is calculated either by considering a portion of the stress-strain curve in the plastic region, or by considering the whole uniform plastic strain region.

6 Test equipment

6.1 Tensile testing machine, verified and calibrated in accordance with ISO 7500-1 and of class 1 or better. The method of gripping the test piece shall conform to the requirements of ISO 6892-1.

6.2 Extensometer, of class 2 or better (class 1 in the event of determination of the plastic strain ratio *r*, see ISO 10113) in accordance with ISO 9513, for measuring changes in the gauge length.

6.3 Dimension-measuring equipment, capable of measuring the width and thickness of the parallelsided section of the test piece to within the tolerances specified for these dimensions in ISO 6892-1.

7 Test pieces

7.1 Sampling to obtain test pieces shall be in accordance with the requirements of the relevant product standard or, if not specified therein, by agreement. Machining tolerances, tolerances on shape, and the marking shall be as specified in ISO 6892-1.

(standards.iteh.ai)

7.2 In the event of the plastic strain ratio r and the tensile strain hardening exponent n being determined simultaneously, the conditions of ISO 10113 shall apply.

https://standards.iteh.ai/catalog/standards/sist/cf1b041c-c34f-44f2-8396-

7.3 The thickness of the test piece shall be that of the fullsheet, unless otherwise specified.

7.4 The surface of the test piece shall not be damaged (by scratches, etc.).

8 Procedure

8.1 In general, the test shall be carried out at ambient temperature, i.e. between 10 °C and 35 °C. Tests carried out under controlled conditions, where required, shall be made at a temperature of (23 ± 5) °C.

8.2 The test piece shall be mounted in the tensile testing machine (see <u>6.1</u>) so that the force can be applied axially in accordance with ISO 6892-1.

8.3 In the plastic range, the strain rate of parallel length shall not exceed $0,008 \text{ s}^{-1}$, unless otherwise specified in the relevant standard. This rate shall be kept constant during the time interval over which the tensile strain hardening exponent is determined.

If a proof strength or the yield strength is determined during the same tensile test, the strain rate for this determination shall be as defined in ISO 6892-1.

8.4 When *n* is determined over the whole uniform plastic strain range, the upper limit for these data points shall be immediately prior to the strain at which the maximum force occurs.

For materials with homogenous deformation behaviour (i.e. materials without upper and/or lower yield strength), the lower limit of the range over which n is determined shall not be lower than a point after which the final testing rate used for determining $R_{\rm m}$ has been achieved (see Figure 1).