

INTERNATIONAL
STANDARD

ISO/IEC
10918-7

Second edition
2021-09

**Information technology — Digital
compression and coding of
continuous-tone still images —**

**Part 7:
Reference software**

iTEH Standards
Technologies de l'information — Compression numérique et codage
des images fixes à modèle continu —
(<https://standards.iteh.ai>)
Document Preview

[ISO/IEC 10918-7:2021](#)

<https://standards.iteh.ai/catalog/standards/iso/b4a851c5-c445-4f41-a888-1d04dff19c67/iso-iec-10918-7-2021>

Reference number
ISO/IEC 10918-7:2021(E)

© ISO/IEC 2021

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO/IEC 10918-7:2021](https://standards.iteh.ai/catalog/standards/iso/b4a851c5-c445-4f41-a888-1d04dff19c67/iso-iec-10918-7-2021)

<https://standards.iteh.ai/catalog/standards/iso/b4a851c5-c445-4f41-a888-1d04dff19c67/iso-iec-10918-7-2021>

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by ITU-T as Rec. ITU-T T.873 (06/2021) and drafted in accordance with its editorial rules, in collaboration with Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia and hypermedia information*.

This second edition cancels and replaces the first edition (ISO/IEC 10918-7:2019), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the reference software implementations are updated to version 1.58 for reference software 1, and to version 2.0.5 for reference software 2. These versions do not include any new features, they correct implementation errors and improve the overall stability of the software.

A list of all parts in the ISO/IEC 10918 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

CONTENTS

	<i>Page</i>
1 Scope	1
2 Normative references	1
3 Definitions	1
4 Abbreviations	1
5 Conventions	2
6 Reference software	2
6.1 Purpose	2
6.2 Examples of use	2
6.3 General	2
Annex A – Unpacking and compiling reference software A	4
Annex B – Using reference software A	5
B.1 General	5
B.2 Encoder options defining the quality of the image	5
B.3 Options controlling the colour space	5
B.4 Options controlling the scan generation and entropy coding	5
B.5 Options controlling the quantizer	6
B.6 Options controlling the subsampling of components	6
B.7 Miscellaneous options	6
B.8 Decoder options	6
Annex C – Unpacking and compiling reference software B	7
Annex D – Using reference software B	9
D.1 General	9
D.2 Encoder options defining the quality of the base and full image	9
D.3 Encoder options controlling the colour space	9
D.4 Encoder options controlling the scan generation and entropy coding	9
D.5 Encoder options controlling the DCT implementation	10
D.6 Encoder options controlling the subsampling of components	10
D.7 Miscellaneous encoder options	10
D.8 Decoder options controlling the choice of the inverse discrete cosine transform	11
D.9 Decoder options selecting the output file format	11
D.10 Decoder options controlling the rendering of the output image	11
D.11 Miscellaneous decoder options	12
D.12 Decompressing to pgx	12
Bibliography	13

Electronic attachment with two reference implementations of Rec. ITU-T T.81 | ISO/IEC 10918-1.

Introduction

Rec. ITU-T T.81 | ISO/IEC 10918-1 specifies the codestream format and the decoding process, and is designed primarily for compression of continuous-tone photographic content.

This Recommendation | International Standard provides reference software for Rec. ITU-T T.81 | ISO/IEC 10918-1. The software has been successfully compiled and tested on Linux and Windows operating systems and conforms to the decoder requirements set forth in Rec. ITU-T T.83 | ISO/IEC 10918-2. It has also been tested for conformance to Rec. ITU-T T.86 | ISO/IEC 10918-4 and ISO/IEC 18477-4.

Instructions for unpacking and building the software are found in Annexes A and C. Instructions for its use are listed in Annexes B and D.

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO/IEC 10918-7:2021](#)

<https://standards.iteh.ai/catalog/standards/iso/b4a851c5-c445-4f41-a888-1d04dff19c67/iso-iec-10918-7-2021>

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

**Information technology – Digital compression and coding of continuous-tone
 still images: Reference software**

1 Scope

This Specification provides reference software for the coding technology specified in Recommendation ITU-T T.81 | ISO/IEC 10918-1. While the reference implementations also provide an encoder, conformance testing of their encoding process is beyond the scope of this Specification.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. At the time of publication, the editions indicated in dated references were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

- Recommendation ITU-T T.81 (latest) | ISO/IEC 10918-1 (latest), *Information technology – Digital compression and coding of continuous-tone still images: Requirements and guidelines*.

3 Definitions

For the purposes of this Specification, the terms and definitions specified in Rec. ITU-T T.81 | ISO/IEC 10918-1 and the following apply.

3.1 codestream; JPEG file: Sequence of bytes.

3.2 ptx format; portable graphics format: Image format describing integer-based continuous-tone images.

NOTE – For the purposes of this Specification, the image format is as specified in Rec. ITU-T T.803 | ISO/IEC 15444-4.

3.3 pnm format; portable any map format: Image format describing integer-based continuous-tone images of either one or three components consisting of a header determining image dimensions and sample precision and component-interleaved image samples encoded as 8-bit or 16-bit big-endian integers.

NOTE – For a specification of the pnm format, see Bourke (1997).

3.4 R'G'B': Colour space that describes a colour by three gamma-corrected coordinates relative to three colour primaries.

3.5 upsampling: Procedure that increases the spatial or temporal sampling rate of a time-discretely sampled signal.

3.6 Y'C_BC_R: Colour space that describes a colour by 1 luma coordinate and 2 chroma coordinates derived from a gamma-corrected R'G'B' colour space by a linear transformation.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

DCT Discrete Cosine Transform

DNL Define Number of Lines

IDCT Inverse Discrete Cosine Transform

MCU Minimum Coded Unit

POSIX Portable Operating System Interface

5 Conventions

Text in Times New Roman provides instructions, comments or details for the reader.

Text in Courier New indicates program input or output as necessary to either run the software or as generated by the software on the console.

6 Reference software

6.1 Purpose

The purpose of this Specification is to provide:

- a reference decoder software capable of decoding codestreams that conform to Rec. ITU-T T.81 | ISO/IEC 10918-1;
- a sample encoder software capable of producing codestreams that conform to Rec. ITU-T T.81 | ISO/IEC 10918-1.

The use of the reference software is not required to implement an encoder or decoder in conformance to Rec. ITU-T T.81 | ISO/IEC 10918-1. Requirements established in Rec. ITU-T T.81 | ISO/IEC 10918-1 take precedence over the behaviour of the reference software.

6.2 Examples of use

Some examples of use for the reference decoder software implementations are:

- as an illustration of how to perform the decoding processes specified in Rec. ITU-T T.81 | ISO/IEC 10918-1;
- as the starting basis for the implementation of a decoder that conforms to Rec. ITU-T T.81 | ISO/IEC 10918-1;
- for (non-exhaustive) testing of the conformance of a codestream (or file) to the constraints specified in Rec. ITU-T T.81 | ISO/IEC 10918-1.

NOTE 1 – The lack of detection of any conformance violation by any reference software implementation cannot be considered as a definitive proof that the codestream under test conforms to Rec. ITU-T T.81 | ISO/IEC 10918-1.

Some examples of use for reference encoder software are as:

- an illustration of how to implement an encoding process that produces codestreams that conform to Rec. ITU-T T.81 | ISO/IEC 10918-1;
- a starting point for an implementation of an encoder that conforms to Rec. ITU-T T.81 | ISO/IEC 10918-1;
- a means of generating codestreams conforming to Rec. ITU-T T.81 | ISO/IEC 10918-1 for testing purposes;
- a means of demonstrating and evaluating examples of the quality that can be achieved by an encoding process that conforms to Rec. ITU-T T.81 | ISO/IEC 10918-1.

NOTE 2 – No guarantee of the quality that will be achieved by an encoder is provided by its conformance to Rec. ITU-T T.81 | ISO/IEC 10918-1, as the conformance is only defined in terms of specific constraints imposed on the syntax of the generated codestream and maximum tolerable errors of the discrete cosine transform (DCT) coefficients after reconstruction. In particular, while sample encoder software implementations could suffice to provide some illustrative examples of which quality can be achieved within Rec. ITU-T T.81 | ISO/IEC 10918-1, they provide neither an assurance of minimum guaranteed image encoding quality nor maximum achievable image encoding quality.

NOTE 3 – The computation resource characteristics in terms of program or data memory usage, execution speed, etc. of sample software encoder or decoder implementations cannot be construed as representative of the typical, minimal or maximal computational resource characteristics to be exhibited by implementations of some parts of Rec. ITU-T T.81 | ISO/IEC 10918-1.

6.3 General

The reference software implementations for Rec. ITU-T T.81 | ISO/IEC 10918-1 are available from ISO at <https://standards.iso.org/iso-iec/10918/-7/ed-2/en> and also from ITU at <https://www.itu.int/rec/T-REC-T.873/en>. Each of the two zip archives contains one reference software implementation.

- The file "referenceA.zip" contains a reference implementation for all processes of Rec. ITU-T T.81 | ISO/IEC 10918-1. Unpacking and compilation of this software is explained in Annex A. Guidance on how to use this software is given in Annex B.

- The file "referenceB.zip" contains a reference implementation for the baseline and extended Huffman and arithmetic coding DCT processes of Rec. ITU-T T.81 | ISO/IEC 10918-1. This software does not implement the lossless and hierarchical processes of Rec. ITU-T T.81 | ISO/IEC 10918-1. Unpacking and compilation of this software is explained in Annex C. Guidance on how to use this software is given in Annex D.

NOTE – In ISO ReferenceA.zip and Reference B.zip are called DIS_10918att1.zip and DIS_10918att2.zip, respectively.

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO/IEC 10918-7:2021](#)

<https://standards.iteh.ai/catalog/standards/iso/b4a851c5-c445-4f41-a888-1d04df19c67/iso-iec-10918-7-2021>

Annex A

Unpacking and compiling reference software A¹

(This annex does not form an integral part of this document.)

Source code of the reference software implementation is provided in a zip archive available at <https://standards.iso.org/iso-iec/10918/-7/ed-2/en>, and <https://www.itu.int/rec/T-REC-T.873/en>. Unpacking a zip file is operating system specific. Under portable operating system interface (POSIX) compliant operating systems, open a command line window and enter

```
unzip referenceA.zip
```

This will unpack all components of the software into the current directory.

To compile the software, follow these steps:

- for POSIX compliant operating systems, go to the directory into which the electronic attachment was unpacked, then enter on the command line

```
./configure  
make
```

This assumes that a POSIX compliant shell is available, and the GNU compiler (make, gcc compiler and linker) are installed on the system. The reference software will then be built in the current directory, and a binary named "jpeg" will be created.

- For Microsoft Windows, the Visual Studio VS2010 or VS2013 compiler suite provides another option for building the software. A VS2010 solution file allowing loading and compiling the project can be found in the directory "vs10.0/jpeg". A solution file for VS2013 can be found in the directory "vs12.0/jpeg".

The compiler will generate a command line tool without any graphical interface that compresses images represented in the ppm format into JPEG and expands JPEG images into ppm or pgx files. ppm-files represent one component integer grey-scale or three-component integer colour data, whereas pgx files describe non-upsampled N-component raw sample data bare any colour interpretation.

For the purpose of testing for conformance to Rec. ITU-T T.81 | ISO/IEC 10918-1, the pgx output is preferable as it includes neither a transformation from Y'C_BC_R to R'G'B' and nor an upsampling process. These processes are not formally part of Rec. ITU-T T.81 | ISO/IEC 10918-1, but have been included in later standards, such as Rec. ITU-T T.871 | ISO/IEC 10918-5, also known as JFIF, or ISO/IEC 18477-1.

¹ In the ISO distribution ReferenceA.zip is called DIS_10918att1.zip.