

SLOVENSKI STANDARD
oSIST prEN IEC 60749-22-2:2025
01-februar-2025

**Polprevodniški elementi - Metode za mehansko in klimatsko preskušanje - 22-2.
del: Moč vezi - Preskusne metode za strižno vezavo žice**

Semiconductor devices - Mechanical and climatic test methods - Part 22-2: Bond strength - Wire bond shear test methods

iTeh Standards
(<https://standards.iteh.ai>)

Ta slovenski standard je istoveten z: prEN IEC 60749-22-2:2024

[oSIST prEN IEC 60749-22-2:2025](https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osist-pren-iec-60749-22-2-2025)

<https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osist-pren-iec-60749-22-2-2025>

ICS:

31.080.01	Polprevodniški elementi (naprave) na splošno	Semiconductor devices in general
-----------	---	-------------------------------------

oSIST prEN IEC 60749-22-2:2025 **en**

47/2889/CDV
COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER: IEC 60749-22-2 ED1	
DATE OF CIRCULATION: 2024-12-13	CLOSING DATE FOR VOTING: 2025-03-07
SUPERSEDES DOCUMENTS: 47/2884/RR	

IEC TC 47 : SEMICONDUCTOR DEVICES	
SECRETARIAT: Korea, Republic of	SECRETARY: Mr Cheolung Cha
OF INTEREST TO THE FOLLOWING COMMITTEES:	HORIZONTAL FUNCTION(S):
ASPECTS CONCERNED:	
iTeh Standards (https://standards.itech.ai) Document Preview	
<input type="checkbox"/> SUBMITTED FOR CENELEC PARALLEL VOTING <input checked="" type="checkbox"/> NOT SUBMITTED FOR CENELEC PARALLEL VOTING	

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE [AC/22/2007](#) OR [NEW GUIDANCE DOC](#)).

TITLE: Semiconductor devices - Mechanical and climatic test methods - Part 22-2: Bond strength - Wire bond shear test methods
--

PROPOSED STABILITY DATE: 2031

NOTE FROM TC/SC OFFICERS:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
CONTENTS

3 FOREWORD	4
4 1 Scope	6
5 2 Normative references	6
6 3 Terms and definitions	7
7 4 Apparatus and material required	8
8 4.1 Inspection equipment	8
9 4.2 Measurement equipment	8
10 4.3 Workholder	9
11 4.4 Bond shear equipment	9
12 4.5 Bond shear chisel tool setup	9
13 5 Procedure	9
14 5.1 Calibration	9
15 5.2 Visual examination of bonds to be tested after decapsulation	10
16 5.2.1 Usage of visual examination	10
17 5.2.2 Bond pad examination and acceptability criteria for both Al and Cu bond	
18 5.2.2 pad metallization	10
19 5.2.3 Copper bond and Cu wire examination and acceptability criteria	10
20 5.3 Measurement of the ball bond diameter to determine the ball bond shear	
21 5.3 failure criteria	10
22 5.4 Performing the bond shear test	11
23 5.5 Examination of sheared bonds	11
24 5.6 Bond shear codes for ball bonds	13
25 5.6.2 Type 2 - bond shear	16
26 5.6.3 Type 3 – cratering	18
27 5.6.4 Type 4 - arm contacts specimen (bonding surface contact)	19
28 5.6.5 Type 5 - shearing skip	20
29 5.6.6 Type 6 - bond pad (or bonding surface) lift	20
30 5.7 Bond shear data	21
31 6 Summary	21
32 Annex A (informative) Performing this test method on “stitch on ball” bonds	22
33 Annex B (informative) Performing this test method on ultrasonic wedge bonds	24
34 B.1 Scope (Additional text to clause1):	24
35 B.2 Terms and definitions	24
36 B.3 Apparatus and equipment	25
37 B.3.1 Bond shear equipment (Replaces 4.4)	25
38 B.4 Procedure	25
39 B.4.1 Performing the bond shear test (Replaces 5.4)	25
40 B.4.2 Examination of sheared bonds (Replaces 5.5)	25
41 B.5 Shear failure criteria for aluminium wedge bonds (Replaces 6)	25
42 Annex C (informative) Performing shear testing when tool cannot reach below bond	
43 43 centerline	26
44 Annex D (informative) Concerns with decapsulation processes for devices with copper	
45 45 wirebonds	28
46 Annex E (informative) Bond contact area – Valid method for comparing shear force	30
47 Bibliography	32

48		
49	Figure 1 — Bond shear set-up for bond on die bonding pad (Similar setup for bonds on	
50	other bonding surfaces, such as package substrate/leadframe)	8
51	Figure 2 — Proper height placement of shear tool with respect to ball centre line	9
52	Figure 3 — Ball bond measurement: side view and top view (for symmetrical vs.	
53	asymmetrical)	11
54	Figure 4 — Bond Shear Codes	16
55	Figure 5 — Imprints on Al pad from lifted bonds with no evidence of shearing (Type 1)	16
56	Figure 6 — Shear of aluminium pad (with copper wire) (Type 2 - Variation A)	17
57	Figure 7 — Shear wholly within gold/aluminium intermetallic layer (Type 2 - Variation	
58	B) 18	
59	Figure 8 — Shear in bulk copper ball bond and at material interface (Type 2 - Variation	
60	C) 18	
61	Figure 9 — Shear wholly within gold ball bond (Type 2 - Variation D)	18
62	Figure 10 — Shear wholly within Cu ball bond (Type 2 - Variation D)	18
63	Figure 11 — Bond pad cratering after shear test	19
64	Figure 12 — Bond pad cratering (pad and ball view) and validation of crack and thin Al	
65	on another pad	19
66	Figure 13 — Images of shear tool contacting the bonding surface (shear tool set too	
67	low) 20	
68	Figure 14 — Images of shearing skip (shear tool set too high)	20
69	Figure A.1 — Top view of “stitch on ball” bond	22
70	Figure A.2 — Side view of “stitch on ball” bond	22
71	Figure A.3 — Die to die bonding	23
72	Figure A.4 — “Reverse” bond, with ball on leadframe	23
73	Figure C.1 — Passivation preventing proper height placement of shear tool	26
74	Figure C.2 — Remnant due to shear tool placement above centerline	26
75	Figure C.3a — Cross section showing excessive Al splash	27
76	Figure C.3b — Excessive Al splash	27
77	Figure D.1 — Images of copper ball bonds showing severe damage from etching	
78	process	28
79	Figure D.2 — Comparison images showing degree of Cu attack due to two different	
80	etchants	28
81	Figure D.3 — Stitch bond after decapsulation using laser ablation	29
82	Figure D.4 — Die and wirebonds decapsulated using laser ablation	29
83	Figure E.1 — Sample cross section of a copper wire bond	30
84	Figure E.2 — Image analysis of pixel distribution within the fitted circle (represents	
85	ball). Light grey distribution represents IMC, in this case coverage is 73 %.	31
86	Figure E.3 — Images of “optical vs. SEM” correlation study	31
87		
88		

89 INTERNATIONAL ELECTROTECHNICAL COMMISSION

90

91

92 SEMICONDUCTOR DEVICES –
93 MECHANICAL AND CLIMATIC TEST METHODS –
94

95 Part 22-2: Bond strength - wire bond shear test methods

96

97

98

FOREWORD

99 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
100 all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
101 co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
102 in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
103 Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
104 preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
105 may participate in this preparatory work. International, governmental and non-governmental organizations liaising
106 with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
107 Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

108 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
109 consensus of opinion on the relevant subjects since each technical committee has representation from all
110 interested IEC National Committees.

111 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
112 Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
113 Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
114 misinterpretation by any end user.

115 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
116 transparently to the maximum extent possible in their national and regional publications. Any divergence between
117 any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

118 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
119 assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
120 services carried out by independent certification bodies.

121 6) All users should ensure that they have the latest edition of this publication.

122 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
123 members of its technical committees and IEC National Committees for any personal injury, property damage or
124 other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
125 expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
126 Publications.

127 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
128 indispensable for the correct application of this publication.

129 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
130 rights. IEC shall not be held responsible for identifying any or all such patent rights.

131 IEC 60749-22-2 has been prepared by IEC technical committee 47: Semiconductor devices. It
132 is an International Standard.

133 This first edition together with the first edition of IEC 60749-22-1, cancels and replaces IEC
134 60749-22 published in 2002 and is based on JEDEC document JESD22-B116B. It is used with
135 permission of the copyright holder, JEDEC Solid State Technology Association.

136 This edition includes the following significant technical changes with respect to the previous
137 edition:

138 Major update, including new techniques and use of new materials (e.g. copper wire) involving
139 a complete rewrite as two separate subparts (this document and IEC 60749-22-1)

141 The text of this International Standard is based on the following documents:

Draft	Report on voting
XX/XX/FDIS	XX/XX/RVD

142

143 Full information on the voting for its approval can be found in the report on voting indicated in
144 the above table.

145 The language used for the development of this International Standard is English

146 This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
147 accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
148 at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
149 described in greater detail at www.iec.ch/publications.

150 The committee has decided that the contents of this document will remain unchanged until the
151 stability date indicated on the IEC website under webstore.iec.ch in the data related to the
152 specific document. At this date, the document will be

- 153 • reconfirmed,
- 154 • withdrawn,
- 155 • replaced by a revised edition, or
- 156 • amended.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[oSIST prEN IEC 60749-22-2:2025](https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osist-pren-iec-60749-22-2-2025)

<https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osist-pren-iec-60749-22-2-2025>

158

SEMICONDUCTOR DEVICES – MECHANICAL AND CLIMATIC TEST METHODS –

PART 22-2: BOND STRENGTH - WIRE BOND SHEAR TEST METHODS

163

164

165 1 Scope

166 This test method establishes a means for determining the strength of a ball bond to a die or
167 package bonding surface and may be performed on pre-encapsulation or post-encapsulation
168 devices. This measure of bond strength is extremely important in determining two features:

169 the integrity of the metallurgical bond which has been formed, and

170 the quality of ball bonds to die or package bonding surfaces.

171 This test method covers thermosonic (ball) bonds made with small diameter wire from 15 µm to
172 76 µm (0,000 6 "to 0,003").

173 This test method can only be used when the bonds are large enough to allow for proper contact
174 with the shear test chisel and when there are no adjacent interfering structures that would hinder
175 the movement of the chisel. For consistent shear results the ball height must be at least 4,0 µm
176 (0,000 6 ") for ball bonds, which is the current state of the art for bond shear test equipment at
177 the time of this revision.

178 This test method can also be used on ball bonds that have had their wire removed and on to
179 which a 2nd bond wire (typically a stitch bond) is placed. This may be known as "stitch on ball"
180 and "reverse bonding". See Annex A for additional information.²⁵

181 The wire bond shear test is destructive. It is appropriate for use in process development,
182 process control, and/or quality assurance.

183 This test method may be used on ultrasonic (wedge) bonds, however its use has not been
184 shown to be a consistent indicator of bond integrity. See Annex B for information on performing
185 shear testing on wedge bonds.

186 This test method does not include bond strength testing using wire bond pull testing. Wire bond
187 pull testing is described in IEC 60749-22-1, Bond strength testing – Wire bond pull test methods.

188

189 2 Normative references

190 The following documents are referred to in the text in such a way that some or all of their content
191 constitutes requirements of this document. For dated references, only the edition cited applies.

192 IEC 60749-22-1, *Semiconductor devices – Mechanical and climatic test methods – Part 22-1:*
193 *Bond strength testing – Wire bond pull test methods.*

194 For undated references, the latest edition of the referenced document (including any
195 amendments) applies.

196 Also see Bibliography (informative) references.

197 **3 Terms and definitions**

198 For the purposes of this document, the following terms and definitions apply.

199 ISO and IEC maintain terminology databases for use in standardization at the following
200 addresses:

- 201 • IEC Electropedia: available at <https://www.electropedia.org/>
- 202 • ISO Online browsing platform: available at <https://www.iso.org/obp>

203 **3.1**

204 **ball bond**

205 adhesion or welding of a small diameter wire, typically gold or copper, to a bonding surface
206 metallization, usually an aluminium alloy, using a thermosonic wire bond process

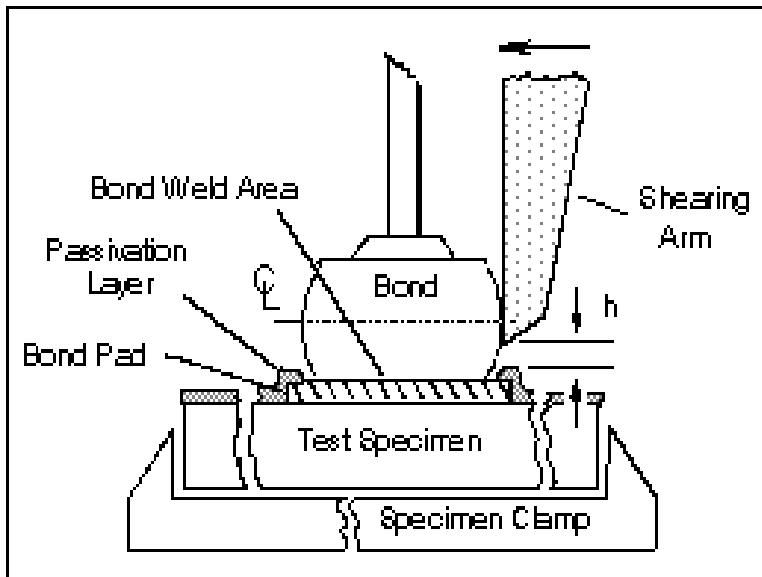
207 Note 1 to entry: The ball bond includes the enlarged spherical, or nail-head, portion of the wire (provided by the
208 flame-off and first bonding operation), the underlying bonding surface and the ball bond-bonding surface metallurgical
209 weld interface.

210 Note 2 to entry: Gold wire implies a gold alloy in which the gold content is likely 99% or greater. Copper wire
211 implies a copper alloy of similarly high copper content and also includes copper wire with a very thin coating of
212 palladium]

213 Note 3 to entry: At the time of this revision, other wire materials and wire coatings are being evaluated, but there is
214 not enough information collected to confirm that the fail modes listed in this test method are valid for any of the new
215 wire types.

iTeh Standards
Document Preview

216 **3.2**


217 **bonding surface**

218 either 1) die pad metallization or 2) package surface metallization to which the wire is ball
219 bonded

<https://standards.iteh.ai> oSIST prEN IEC 60749-22-2:2025

220 **3.3** <https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osit-pr-en-iec-60749-22-2-2025>
221 **bond shear**
222 process in which an instrument uses a chisel-shaped tool to shear or push a ball bond off the
223 bonding surface (see Figure 1)

224 NOTE The force required to cause this separation is recorded and is referred to as the bond shear force. The bond
225 shear force of a ball bond, when correlated to the diameter of the ball bond, is an indicator of the quality of the
226 metallurgical bond between the ball bond and the bonding surface metallization.

227

228 **Figure 1 — Bond shear set-up for bond on die bonding pad**
 229 **(Similar setup for bonds on other bonding surfaces, such as package**
 230 **substrate/leadframe)**

231 **3.4**
 232 **shear tool; shear arm**
 233 chisel (made of tungsten carbide or an equivalent material with similar mechanical properties)
 234 with specific angles on the bottom and back of the tool to ensure a shearing action

iTeh Standards WIRE BONDING

Document Preview

235 **3.5**
 236 **stitch bond**
 237 second bond during the ball (thermosonic) bonding process, in which the wire is typically
 238 bonded to the package bonding surface.

<https://standards.iteh.ai/catalog/standards/sist/ce4d154e-be77-4b25-90c5-de84bd7a232f/osist-pren-iec-60749-22-2-2025>

239 Note 1 to entry: A stitch bond may also be referred to as a crescent bond.

240 Note 2 to entry: For some unique constructions (e.g., "stitch on ball"), the second bond may be formed on top of
 241 another ball bond, from which the wire has been removed.

242 **3.6**
 243 **wedge bond**
 244 adhesion or weld of a thin wire, typically aluminium, copper, or gold to a die pad metallization
 245 or the package bonding surface, usually a plated leadframe post or finger, using an ultrasonic
 246 wire bonding process

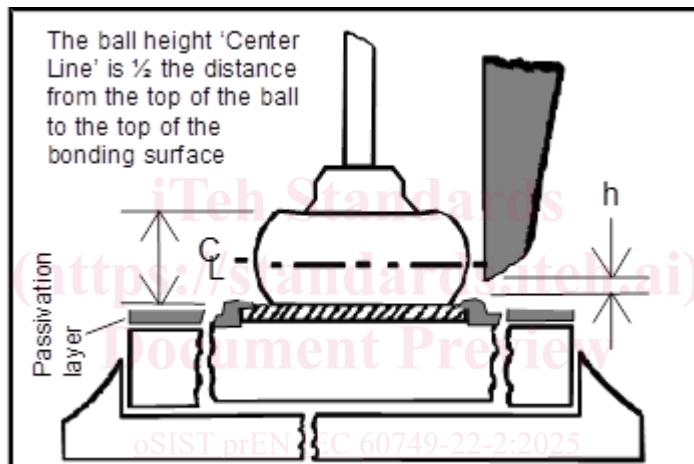
247 Note to entry: See Annex B for information on performing shear testing on wedge bonds.

4 Apparatus and material required

4.1 Inspection equipment

250 An optical microscope system or scanning electron microscope providing a minimum of 70X
 251 magnification. A higher magnification may be necessary for 15 µm (0,000 6") diameter wire.

4.2 Measurement equipment


253 An optical microscope/measurement system capable of measuring the bond diameter to within
 254 $\pm 2,54 \mu\text{m}$ (0,000 1").

255 4.3 Workholder

256 Fixture used to hold the part being tested parallel to the shearing plane and perpendicular to
 257 the shear tool. The fixture shall also eliminate part movement during bond shear testing. If using
 258 a calliper controlled workholder, place the holder so that the shear motion is against the positive
 259 stop of the calliper. This is to ensure that the recoil movement of the calliper controlled
 260 workholder does not influence the bond shear test.

261 4.4 Bond shear equipment

262 The bond shear equipment must be capable of repeatable, precision placement of the shearing
 263 tool with respect to the ball height and the bonding surface. The specified distance (h) above
 264 the topmost part of the bonding surface (e.g., passivation layer on IC, solder mask on organic
 265 substrate) shall ensure the shear tool does not contact the bonding surface (e.g., top
 266 passivation or polyimide layer, solder mask) and shall be less than the distance from the
 267 topmost part of the bonding surface to the centre line (CL) of the ball bond (see Figure 2). See
 268 Annex C for guidance when the passivation, or other structures on the die surface and
 269 excessive Al splash prevent the shear tool from contacting the ball below the centre line.

270 **Figure 2 — Proper height placement of shear tool with respect to ball centre line**

271 4.5 Bond shear chisel tool setup

272 When choosing the proper chisel for the bond being sheared items to consider include but are
 273 not limited to flat shear face, sharp shearing edge, shearing width of a minimum of 1,2X the
 274 bond diameter, and bond length. The sample and chisel face should be clean and free of chips
 275 or other defects that will interfere with the shearing test.

276 Bonds should also be examined to determine if adjacent interfering structures are far enough
 277 away to allow suitable placement and clearance (above the bonding surface and between
 278 adjacent bonds) for the shear test tool.

280 5 Procedure

281 5.1 Calibration

282 Before performing the bond shear test, it must be determined that the equipment has been
 283 calibrated in accordance with manufacturer's specifications and is presently in calibration.
 284 Recalibration is required if the equipment is moved to another location.