TECHNICAL SPECIFICATION

First edition

Road vehicles — Multidimensional measurement and coordinate systems definition

Véhicules routiers — Mesurage multidimensionnel et définition des systèmes de coordination

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TS 21002 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973cb710ccbe14ec/iso-prf-ts-21002

PROOF/ÉPREUVE

Reference number ISO/TS 21002:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TS 21002 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973cb710ccbe14ec/iso-prf-ts-21002

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forev	vord	iv					
Intro	duction	v					
1	Scope						
2	Normative references						
3	Torms and definitions						
1	Combola	ـــــــــــــــــــــــــــــــــــــ					
4	Symbols	0					
5	Sensor calibration						
6	Procedures zero-position verification						
	6.1 General						
	6.2 Verification acceptance limits						
	6.3 Zero-position data collection						
	6.4 Calculations						
	6.5 Zero-position verification with DAS parameters implemented	16					
7	Coordinate system transformation						
	7.1 Conditions	17					
	7.2 Sensor data processing spherical to orthogonal coordinate system	17					
Anne	x A (informative) Measurement orthogonal coordinate systems						
Anne	x B (informative) Zero-position fixture and data collection examples						
Anne	x C (informative) Mathematical background data processing						
Anno	x D (informativa) Applicable sonsors	12					
Anne	ISO/PRF TS 21002	47 2					
Anne	x E (informative) Suggestions for generic workflow - parameter implementation in data acquisition systems and verification of post processing software	43					
Anne	x F (informative) ISO MME code examples	47					
Anne	x G (informative) Expected outputs multidimensional sensors mounted in dummy						
Biblic	ography						

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22, *Road Vehicles*, Subcommittee SC 36, Safety aspects and impact testing. ISO/PRF TS 21002 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973c-

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

This document provides a unified method to handle and process various types of multidimensional displacement sensors for use in crash dummies and automotive crash testing. The content covers existing sensors and dummies, but the document also offers a generic method to handle future new dummies and/or sensors.

Multidimensional measurement systems are used in crash dummies (ATD, or anthropomorphic test device) to monitor the position of dummy features (e.g. ribs, abdomen, etc.) for injury assessment. The dummy feature position is typically expressed in an orthogonal coordinate system which is fixed to the thoracic spine of the dummy, see <u>Annex A</u>. The systems covered in this document are an assembly of one distance sensor and one or two angle sensors, the axes of which are organised in a (rotating) spherical coordinate system, see <u>Figure C.1</u>. Other 2- and 3-dimensional position measurement systems are outside the scope of this document. Although in this document a suit of ATD's and their features are discussed to explain the methodology, its scope is not limited to these examples and can be applied to any other ATD and its features.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TS 21002 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973cb710ccbe14ec/iso-prf-ts-21002

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TS 21002 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973cb710ccbe14ec/iso-prf-ts-21002

Road vehicles — Multidimensional measurement and coordinate systems definition

1 Scope

This document defines the measurement coordinate systems and presents the protocol to determine the sensor offsets to the chosen coordinate system. Finally, the method is presented how to process the sensor spherical coordinate system data to calculate the position of a dummy feature in threedimensional space in the defined local orthogonal coordinate system.

Normative references 2

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>

ISO/PRF TS 21002

3.1

3.1 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973c-multidimensional measurement system (e.g. rib, abdomen, etc.) with respect to a defined reference feature (e.g. dummy spine) and its local coordinate system origin.

Note 1 to entry: Examples of multidimensional sensors and applications are given in the NOTES of Figure 1, Figure 2 and Figure 3.

3.2

radius

distance between the centre of rotation at spine interface and centre of rotation at feature interface (e.g. dummy rib)

Note 1 to entry: The parameter radius (*R*) is associated with the ISO MME Code DC for Distance, ISO/TS 13499^[2].

3.3

sensor Y-angle

angle of the multidimensional sensor along Y-axis with respect to local orthogonal coordinate system

Note 1 to entry: The positive rotation direction is defined following SAE sign convention right hand rule.

3.4

sensor Z-angle

angle of the multidimensional sensor along Z-axis with respect to local orthogonal coordinate system

Note 1 to entry: The positive rotation direction is defined following SAE sign convention right hand rule.

Note 2 to entry: Examples of the angle definitions are given in the NOTES of Figure 1, Figure 2 and Figure 3.

Key

1 radius, *R*_i

NOTE Two examples for WorldSID application are shown: left image 2D IR-TRACC, right image S-Track.

Figure 1 — Two-dimensional sensor mounted in right-hand side WorldSID 50M dummy

NOTE Two examples for THOR application are show: left image IR-TRACC, right image S-Track.

Figure 2 — three-dimensional sensors mounted in THOR 50M right hand view and global coordinate system.

Key

1 radius, *R*_i

NOTE Two informative examples for THOR application are shown: left image 3D IR-TRACC, right image 3D S-Track).

iTeh STANDARD PREVIEW

Figure 3 — Three-dimensional sensors for THOR lower right hand thorax and their local orthogonal coordinate system

ISO/PRF TS 21002

3.5 https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973c-

zero-position b710ccbe14ec/iso-prf-ts-21002 condition of multidimensional sensor when mounted by the spine interface and the distance sensor is aligned with (parallel to) the local orthogonal coordinate system axes and the feature interface is fixed

at an accurately defined distance from the coordinate system origin

Note 1 to entry: By definition the angles of the multidimensional position sensor are zero.

3.6

zero-position fixture

tool to set up a multidimensional position sensor in its *zero-position* (3.5)

Note 1 to entry: A zero-position fixture has accurately machined reproducible mountings to simulate the dummy spine and the feature mountings. These sensor mountings of the fixture are accurately positioned in (2D- and 3D) space such that the sensor is in its zero-position condition, called position 0 (position zero). The fixture has additional mounting positions for the feature interface, which are translated from zero position over a defined distance in a direction perpendicular to the distance sensor axis and parallel to at least one of the local orthogonal coordinate system axes.

Note 2 to entry: The fixture is considered adequately accurate if the overall dimensional tolerance stack ups of the sensor mountings are within ± 0.3 mm in all directions.

Note 3 to entry: Examples of 2D and 3D zero-position fixtures are given in <u>Annex B</u>.

Note 4 to entry: The zero-position fixtures are used in subsequent steps of the zero-position verification procedure:

- a) to find the offset of the sensors with respect to the local orthogonal coordinate system;
- b) to remove offsets (by adjustment or compensation in a data acquisition system);
- c) to check if sensor offsets are removed with a live data acquisition system;

- d) to check sensor polarities with respect to global orthogonal coordinate system;
- e) to check if calculations for coordinate system transformation are reproducing the design positions of the fixture in 2D or 3D space. See paragraph 7 and <u>Annex B</u>.

3.7

offset angle

output in degrees of the angle sensor(s) when the multidimensional position sensor is in its *zero-position* (3.5) condition

Note 1 to entry: If the angle sensor has a positive offset according to the local orthogonal coordinate system, the offset angle is defined positive.

3.8

orientation angle

correction angle for multidimensional sensors that can be mounted in sensor orientation for left hand and right hand side impact operation, as well as for frontal impact operation

Note 1 to entry: Typically the two-dimensional sensors can be mounted in various orientations inside the dummy. In side impact dummies the sensors can be set up for left hand and right hand impact (even simultaneously), and the Q10 child dummies can be set up for both frontal and lateral impacts.

Note 2 to entry: The two-dimensional sensors can be oriented inside the dummy with a rotated coordinate system about the Z-axis. The orientation angle can be implemented in Data Acquisition Systems Z-angle data channels as a fixed offset to correct for a rotated coordinate system, see <u>Table 1</u>.

Table 1 — Orientation angle definition per orientation in the dummy

		(StaSensor prientation for impact operation			
		Left Lateral	Frontal	Right Lateral	
Orientation angle		-90° <u>ISO/PRF</u>	<u>TS 21002</u> 0°	+90°	
https://standards.iteh.ai/catalog/standards/sist/cddffeb1-5c6e-46eb-973c-					

3.9

b710ccbe14ec/iso-prf-ts-21002

reference angle

orientation angle minus the *offset angle* (3.7)

Note 1 to entry: Calculate the reference angle with <u>Formula (1)</u>.

 $\varphi_{\rm REF} = \varphi_{\rm ORIENT} - \varphi_{\rm OSZ}$

(1)

Note 2 to entry: The reference angle can be used with data acquisition systems that can handle only one fixed offset parameter, see example in Figure 4.

Figure 4 — Angle sensor parameter examples seen from top of dummy (looking over dummy shoulder)

Table 2 — Exam	ples for φ_{REF} and φ_{ORIEI}	NT when offset angle is	s +3°, for left side,	frontal and right
	iTeh side impac	t dummy set up, see <mark>Fi</mark>	gure 4	

	Left lateral impact	Frontal impact	Right lateral impact			
$arphi_{ ext{ORIENT}}$	-90	0	+90			
$arphi_{ m OSZ}$	+3 <u>ISO/PRF TS</u>	21002 +3	+3			
$arphi_{ m REF}$	ttps://standards.iteh.ai/ 93 alog/standards	s/sist/cddffeb1-5c3e-46eb-973c-	+87			
b710ccbe14ec/iso-prf-ts-21002						

3.10

angle sensor polarity

direction of rotation of the sensor shaft with reference to its fixed body in relation to its electrical (digital) signal output and sensor body and shaft orientation to the relevant coordinate system

Note 1 to entry: The polarity is defined positive when the far end of the shaft points in the positive orthogonal direction and the shaft (or internal wiper) is rotated in the positive rotation direction according to the relevant coordinate system, see example Figure 5.

Note 2 to entry: The value of the polarity can only be +1 or -1.

Note 3 to entry: Depending of the sensor assembly orientation in the dummy some sensors need to change the polarity sign to get a positive output in accordance with the relevant coordinate system.

Figure 5 — Positive polarity for angle sensors

4 Symbols iTeh STANDARD PREVIEW

Table 3 m dist of symbols.ai)

Parameter	Symbol	Unit	Definition/description	Application
X-axis	https://sta	<u>IS</u> Indards.iteh.ai/catak b710ccl	Global orthogonal coordinate system Standards/sisteddieb1-5c6e-46eb-9/3c- X-axis aldesign prf to 21002	
Y-axis	у	-	Global orthogonal coordinate system Y-axis	
Z-axis	Z	-	Global orthogonal coordinate system Z-axis	
Origin of local orthogo-	O _{UTS}	-	Origin upper thoracic spine	
nal coordinate systems	O _{LTS}		Origin lower thoracic spine	
	$O_{\rm LS}$		Origin lumbar spine	
	O _{DC}		Origin distance sensor	
	x _{UTS}	-	Local X-axis upper thoracic spine	3D-THOR
	<i>y</i> _{UTS}	-	Local Y-axis upper thoracic spine	3D-THOR
	Z _{UTS}	-	Local Z-axis upper thoracic spine	3D-THOR
	x _{DC}	-	Distance sensor axis	3D-THOR
	y _{DC}		Position sensor Y-pivot axis	3D-THOR
	Z _{DC}	-	Position sensor Z-pivot axis	3D-THOR
	x _{LTS}	-	Local X-axis lower thoracic spine	3D-THOR
	<i>y</i> _{LTS}	-	Local Y-axis lower thoracic spine	3D-THOR
	$z_{\rm LTS}$	-	Local Z-axis lower thoracic spine	3D-THOR
	x _{LS}	-	Local X-axis lumbar spine	3D-THOR
	y _{LS}	-	Local Y-axis lumbar spine	3D-THOR
	Z _{LS}	-	Local Z-axis lumbar spine	3D-THOR

Parameter	Symbol	Unit	Definition/description	Application
Distance	D	mm	Design distance on zero-position fixture	2D
Distance position 0	$D_{\rm ZERO}$		from 2D sensor origin to rib interface centre in position-0, position-1, posi-	
Distance position 1	$D_{\rm P1}$		tion-2	
Distance position 2	$D_{\rm P2}$			
Distance positions		mm	Design distance on zero-position fixture	3D
ZERO-L, ZERO-R,	D _{ZERO}		from origin O _{UTS} , O _{LTS} , or O _{LS} to rib interface centre in position ZERO, posi-	
PZL, PZR,	D_{PZ}		tion PZ (L and R), position PY (L and R),	
PYL, PYR	$D_{\rm PY}$		position PYZ (L and R)	
PYZL, PYZR	$D_{\rm PYZ}$			
Z-angle	$\Theta_{\rm Z}$	degrees	Design Z-angles on zero-position fixture	2D
Angle position 0	$\Theta_{\rm ZZERO}$		2D sensor origin to rib interface centre	
Angle position 1	$\Theta_{ m Z1}$			
Angle position 2	$\Theta_{\rm Z2}$			
Y-angle positions	$\Theta_{ m Y}$	degrees	Design Y-angles on zero-position fixture	3D
ZERO-L, ZERO-R,	$\Theta_{ m YZERO}$		origin O_{UTS} , O_{LTS} , or O_{LS} to rib interface centre in position ZERO, position PZ (L	
PZL PZR,	O _{Y PZ}		and R), position PY (L and R), position	
PYL, PYR		IANDAI	PYZ (Land R), V LL, VV	
PYZL, PYZR	$\Theta_{\rm YPYZ}$	standard	s.iteh.ai)	
Z-angle positions	$\Theta_{\rm Z}$	degrees	Design Z-angles on zero-position fixture	3D
ZERO-L, ZERO-R,	$\Theta_{\rm ZZERO}$	<u>ISO/PRF T</u>	origin O _{UTS} , O _{LTS} , or O _{LS} to rib interface	
PZL PZR,	$\Theta_{\rm ZPZ}$	b710ccbe14ec/iso	position dy position PYZ (L and R)	
PYL, PYR	$\Theta_{ m ZPY}$			
PYZL, PYZR	$\Theta_{ m ZPYZ}$			
Calibration range	d _E	mm	Distance between starting and end point	
			of displacement calibration	
Distance sensor output	U _{DC}	V, LSB	Distance sensor output	
Tubes-IN output	U _{DC IN}	V, LSB	floating tubes pushed IN	IR-TRACC only
Tubes-OUT output	U _{DC OUT}	V, LSB	Output at certain displacement with all floating tubes pushed OUT	IR-TRACC only
Linearization exponent	EXP	[-]	Optimized linearization exponent	IR-TRACC only
Linearized voltage	$U_{\rm LIN}$	V_{LIN}	IR-TRACC output to power of exponent;	IR-TRACC only
		LSB _{LIN}	calculated parameter	
Distance sensor calibra- tion factor	C _{DC}	mm/V and mm/LSB mm/	linear sensor mm displacement per output	Ratiometric sen- sor
		V_{LIN}	IR-TRACC mm displacement per line-	IR-TRACC
		mm/LSB _{LIN}	arized output	
Distance sensor sensi- tivity	S _{DC}	V/mm and LSB/mm	linear sensor output per mm displace- ment	Ratiometric sen- sor
		V _{LIN} /mm and	IR-TRACC linearized output per mm	IR-TRACC
		LSB _{LIN} /mm	aisplacement	
Angle sensor calibration	$C_{\rm ANY}$	degrees/V/V	Angle sensor degrees rotation at 1V out-	
lactor	$C_{\rm ANZ}$	degrees/LSB	per digital output	

 Table 3 (continued)

Parameter	Symbol	Unit	Definition/description	Application
Angle concor consitivity	Symbol	V/V/dogroos	Angle consor output per degree retation	Application
Aligie selisor selisitivity	S_{ANY} S_{ANZ}	LSB/degrees	at 1V excitation or	
1112			digital output per degree	
Angle sensor polarity	Р	[-]	The value can be either +1 or -1	2D-3D
Distance sensor Pos0 output	U _{DC0}	V, LSB	Distance sensor average output at zero position on Zeroing Fixture	2D-3D
Distance sensor Pos0 output tubes-IN	U _{DC0 IN}	V, LSB	Distance sensor output at zero position tubes IN	IR-TRACC
Distance sensor Pos0 output tubes-OUT	U _{DC0 OUT}	V, LSB	Distance sensor output at zero position tubes OUT	IR-TRACC
Distance sensor Pos1 output	U _{DC1}	V, LSB	Distance sensor output at position 1	2D
Distance Sensor Pos2 output	U _{DC2}	V, LSB	Distance sensor output at position 2	2D
Distance sensor output position PY	U _{DC PY}	V, LSB	Distance sensor output at position PY	3D
Distance sensor output position PZ	U _{DC PZ}	V, LSB	Distance sensor output at position PZ	3D
Distance sensor output position PYZ	U _{DC PYZ}	V, LSB eh STAN	Distance sensor output at position PYZ DARD PREVIEW	3D
Radius	R	mman	Distance from $\theta_{\rm DC}$ to rib interface	2D 3D
	R ₀	IS	rotation centre, see Figure 3. Distance sensor output in mm at t_0 , at t_i .	
Dadius Das0	https://sta	indards.iteh.ai/catak	g/standards/sist/cddfteb1-5c6e-46eb-97/3c-	20.20
	_{KI0}	mm / loca	fixture calculated using average IN-OUT output	20-30
Radius Pos0 tubes-IN	R _{IN}	mm	Radius at zero position calculated using tubes IN output	IR-TRACC
Radius Pos0 tubes-OUT	R _{OUT}	mm	Radius at zero position calculated using tubes OUT output	IR-TRACC
Radius Pos0	R _{ZERO}	mm	Radius at zero-position	2D-3D
Radius Pos1	R_1		Radius at position-1	2D
Radius Pos2	R_2		Radius at position-2	2D
Radius PY	R _{PV}		Radius at position PY	3D
Radius PZ	R _{p7}		Radius at position PZ	3D
Radius PY7	R		Radius at position PY7	3D
	трүд			
Excitation	U _{EX}	V	Excitation voltage angle sensor during zero-position verification	
Y-angle sensor output	UANY	V, LSB	Y-axis angle sensor voltage	3D
Z-angle sensor output	U _{AN7}	V, LSB	Z-axis angle sensor voltage	
Z-Angle output 0 (ZERO)	U _{ANZ0}	V, LSB	Z-Angle sensor average output at posi- tion-0 (ZERO)	2D & 3D
Z-Angle output 0-Near	U _{ANZ NEAR}	V, LSB	Z-Angle sensor output at position-0 pull Near (3D away from spine)	2D & 3D
Z-Angle output 0-Far	U _{ANZ FAR}	V, LSB	Z-Angle sensor output at position-0 pull Far (3D towards spine)	2D & 3D

 Table 3 (continued)

ISO/TS 21002:2021(E)

Parameter	Symbol	Unit	Definition/description	Application		
Z-Angle output 1	U _{ANZ1}	V, LSB	Z-axis angle sensor output at position-1	2D		
Z-Angle output 2	U _{ANZ2}	V, LSB	Z-axis angle sensor output at position-2	2D		
Z-Angle output PZR	U _{ANZ PZ}	V, LSB	Z-Angle sensor output at position PZ	3D		
Y-Angle output zero	U _{ANY0}	V, LSB	Y- Angle sensor average output at posi- tion-zero	3D		
Y-Angle output ze- ro-Down	U _{ANY DOWN}	V, LSB	Y- Angle sensor output at position-zero pull Down	3D		
Y-Angle output zero-Up	U _{ANY UP}	V, LSB	Y- Angle sensor output at position-0 pull Up	3D		
Y-Angle output PY	U _{ANY PY}	V, LSB	Y-Angle sensor output at position PY	3D		
Y-Offset Angle	$\varphi_{ m OSY}$	degrees	Y-angle sensor average offset between extremes (Up-Down) when at fixture zero-position			
Z-Offset Angle	$\varphi_{ m OSZ}$	degrees	Z-angle sensor average offset between extremes (Near-Far) when at fixture zero-position			
Sensor Y-angle	$arphi_{ m Y} \ arphi_{ m Y0} \ arphi_{ m O}$	degrees	Distance sensor angle along y-axis with respect to local orthogonal coordinate system, see Figure 3, and at t_0 and at t_i .			
Sensor Z-angle	$\frac{\mathbf{T} \boldsymbol{\varphi}_{Z}^{\mathbf{q}_{i}} \mathbf{S}}{\boldsymbol{\varphi}_{Z0}}$	tandard	Distance sensor angle along z-axis with respect to local orthogonal coordinate system, see Figure 3, and, at t_0 and at t_i .			
	$arphi_{ m Zi}$		5.01000			
https	r//standards it e	<u>150/PKF_1</u> h ai/cataloo/standa	<u>5 21002</u> rds/sist/cddffeb1-5c6e-46eb-973c-			
Distance intercept	I _{DC}	b710ccbe14ec/iso	Distance sensor offset in mm from coor- dinate system origin.			
Distance intercept voltage	I _{DCV}	V, V _{LIN} LSB _{LIN}	Calculated (linearized) output at 0mm radius			
Axis offset	δ	mm	Mechanical offset distance between $O_{\rm DC}$ distance sensor origin and coordinate system origin, see Figure 3.	3D thoracic		
Orientation angle	$arphi_{ ext{ORIENT}}$	degrees	Orientation angle of 2D position sensor assembled inside dummy. For definition see also <u>Figure 4</u> and <u>Table 1</u> .	2D		
Reference angle	$arphi_{ ext{REF}}$	degrees	Orientation angle minus offset angle. For definition see also <u>Figure 4</u> and <u>Table 1</u> .	2D		
Time	t	S	time			
	t ₀		time zero, start of the test			
	t _i		time i			
<i>x</i> coordinate	<i>x</i> , <i>x</i> ₀ , <i>x</i> _i	mm	Feature interface rotation centre x- coordinate, x at t_0 , x at t_i , see NOTES of Figure 1, Figure 2 and Figure 3.			
y coordinate	<i>y</i> , <i>y</i> ₀ , <i>y</i> _i	mm	Feature interface rotation centre y- coordinate, y at t_0 , y at t_i , see NOTES of Figure 1, Figure 2 and Figure 3.			
z coordinate	<i>z</i> , <i>z</i> ₀ , <i>z</i> _i	mm	Feature interface rotation centre <i>z</i> - coordinate, <i>z</i> at t_0 , <i>z</i> at t_i , see NOTES of Figure 1, Figure 2 and Figure 3.			

Table 3 (continued)