ISO/<del>DIS</del>-<u>FDIS</u> 5286: <del>2022(E)</del>

Date:2023-04-30

ISO/TC 20/SC 16/WG 5

Secretariat: ANSI

# Flight performance of civil small and light fixed-wing unmanned aircraft systems (UAS) — Test methods

# iTeh STANDARD PREVIEW



ISO/FDIS 5286

https://standards.iteh.ai/catalog/standards/sist/28d17cd2-732e-4bfd-8f98-454454cfe9bb/iso-fdis-5286

#### © ISO <del>2022</del>2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: + 41 22 749 01 11 EmailE-mail: copyright@iso.org

Website: www.iso.org

Published in Switzerland

# iTeh STANDARD PREVIEW (standards.iteh.ai)

#### ISO/FDIS 5286

https://standards.iteh.ai/catalog/standards/sist/28d17cd2-732e-4bfd-8f98-454454cfe9bb/isofdis-5286

## **Contents**

| Forew   | ord                              | lV         |
|---------|----------------------------------|------------|
| Introd  | uction                           | <b>v</b> i |
| 1       | Scope                            | 1          |
| 2       | Normative references             | 1          |
| 3       | Terms and definitions            | 1          |
| 4       | General requirements             | 1          |
| 4.1     | Test purpose                     | 1          |
| 4.2     | Test outline                     | 1          |
| 4.3     | Test requirements                | 2          |
| 4.3.1   | Technical documents              | 2          |
| 4.3.2   | Test article                     | 2          |
| 4.3.3   | Test apparatus                   | 2          |
| 4.3.4   | Personnel                        | 2          |
| 4.3.5   | Management of the test article   | 2          |
| 4.3.6   | Flight test conditions           | 3          |
| 4.3.7   | Test termination and resumption  | 3          |
| 4.4     | Data processing requirement      | 3          |
| 4.5     | Test record                      | 3          |
| 4.6     | Test report <u>ISU/FDIS 3280</u> | 4          |
| 5 h     | Test methods                     | 4          |
| 5.1     | Test items fdis-5286             | 4          |
| 5.2     | Test procedures                  | 5          |
| 5.2.1   | General                          | 5          |
| 5.2.2   | Launch/take-off performance      | 5          |
| 5.2.3   | Maximum take-off mass            | 5          |
| 5.2.4   | Climb performance                | 5          |
| 5.2.5   | Maximum achievable height        |            |
| 5.2.6   | Maximum horizontal speed         | 7          |
| 5.2.7   | Minimum horizontal speed         | 7          |
| 5.2.8   | Maximum flight endurance         | 7          |
| 5.2.9   | Turning performance              | 7          |
| 5.2.10  | Recovery/landing performance     | 7          |
| 5.2.11  | Gliding performance              | 8          |
| Bibliog | graphy                           | 9          |
|         |                                  |            |

© ISO 2023 – All rights reserved iii

ISO/<del>DISFDIS</del> 5286:<del>2022</del>2023(E)

5.2.10 Gliding performance
Bibliography 8

# iTeh STANDARD PREVIEW (standards.iteh.ai)

#### **ISO/FDIS 5286**

https://standards.iteh.ai/catalog/standards/sist/28d17cd2-732e-4bfd-8f98-454454cfe9bb/iso-fdis-5286

iv

iv

© ISO 2022 - All rights reserved

#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO <u>documents\_document</u> should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawnISO draws attention to the possibility that some of the elements implementation of this document may be involve the subjectuse of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents... ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see ).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

This document was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 16, *Unmanned aircraft systems*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>.

#### Introduction

Fixed-wing unmanned aircraft systems (UAS) have been rapidly increased and widely used in agriculture, surveying, monitoring, public security, and so on. However, the test methods for the flight performance of fixed-wing UAS vary worldwide and are yet to be harmonized.

This document provides flight performance test methods of civil fixed-wing UAS to verify the manufacturer's declared specifications. The test items selected in this document are those considered to affect fixed-wing flight performance significantly. Acceptance criteria are not included due to consideration that regulations arecan vary in different countries.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 5286

https://standards.iteh.ai/catalog/standards/sist/28d17cd2-732e-4bfd-8f98-454454cfe9bb/iso-fdis-5286

# Flight performance of civil small and light fixed-wing unmanned aircraft systems (UAS) — Test methods

### 1 Scope

This document specifies the test requirements and methods for verifying the specified flight performance items of civil fixed-wing unmanned aircraft systems (UAS).

This document is applicable to the category of civil small and light fixed-wing UAS, which applies to maximum take-off mass (MTOM) level I through V according to ISO 21895.

#### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 21384-4, Unmanned aircraft systems — Part 4: Vocabulary

ISO 23665, Unmanned aircraft systems — Training for personal involved in UAS operations

ISO 2533, Standard Atmosphere

## 3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 21384-4 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ——IEC Electropedia: available at <a href="https://www.electropedia.org/">https://www.electropedia.org/</a>

### 4 General requirements

#### 4.1 Test purpose

This test aims to verify that a fixed-wing UAS's flight performance indicators satisfy its designed specifications.

#### 4.2 Test outline

A test outline shall be prepared, which should include but not be limited to the following:

- a) a) test basis;
- b) b) test purpose;
- c) the quantity and technical status of the test article and apparatus;
- d) d) test plan (objective, applicable standards/specifications, number of test flights, methods and requirements, instrumentation, conditions, acceptance criteria);

#### ISO/<del>DISFDIS</del> 5286:<del>2022</del>2023(E)

- e) e) test and measurement requirements;
- f) test termination and resumption;
- g) g)—data processing principle;
- h) h) test organization and task allocation;
- i) i) security assurance;

#### 4.3 Test requirements

#### 4.3.1 Technical documents

The following documents should be prepared before the test:

- a) a) design documents, figures and interface file which are relevant to the test;
- b) b) operator's manual.

#### 4.3.2 Test article

The test article shall meet the following requirements.

- a) a) The test article shall comply with conform to the requirements specified in 4.3.14.3.1..
- b) There shall be sufficient test articles to complete each flight test. The allowable number of test articles as per criteria shall include the number of statistical repetitions flights to be completed by each test article.
- c) Characteristics control of the test article's Control of the test article's Control of Cravity gravity and mass envelope.
- d) d) The flight control system (FCS) and its sensor of a test article shall have been properly calibrated.

#### 4.3.3 Test apparatus

All the measuring devices used in flight tests shall have been properly calibrated and shall be within the valid period of calibration.

#### 4.3.4 Personnel

The test personnel shall have the appropriated level of experience and training for the specific test articles in accordance with ISO 23665.

#### 4.3.5 Management of the test article

The management rules after the test article enters the site are as follows.

a) a) After the test article enters the site, it shall be implemented in accordance with the test management rules of the test unit.

2

2

b) After the test articles are handed over, they shall not be adjusted and debugged without consent. The operation is organized and implemented by the test unit; and the clients provide technical support.

#### 4.3.6 Flight test conditions

The flight test shall be conducted under the following conditions.

- a) a) There shall be no considerable obstructions between the ground measurement and control facilities and the test article. Clear radio communication shall be maintained throughout the test; and there shall be no significant electromagnetic interference at the test site.
- b) b) The meteorological conditions during the test shall meet the standard atmospheric conditions.
- c) —The test field and airspace shall meet the flight test requirement.

#### 4.3.7 Test termination and resumption

The termination and resumption principles are specified as follows.

- a) a)—The test shall be terminated in any of the following conditions.
  - 1) How indicators of the test article are ineligible.
  - 2) The test article does not operate normally due to unrepairable faults.
  - 3) 3) Unacceptable changes <u>occur</u> in the external environment.
- b) Additional tests shall be conducted in any of the following situations.
  - 1) 1)—Individual test items fail; the cause has been found and corrected.
  - 2) The original design is changed due to maintenance and repair.
  - 3) 3) The test article is replaced with the components or devices that affect technical performance.

#### 4.4 Data processing requirement

The flight test data obtained from the actual conditions shall be corrected to the standard conditions. The factors to be considered include but are not limited to the following.

- a) a) Unless otherwise specified, the standard atmospheric conditions shall be in accordance with the requirements in ISO 2533.
- b) Unless otherwise specified, the liquid fuel powered UAS shall be tested at 50 % of the maximum liquid fuel level.

#### 4.5 Test record

A test record should include but not be limited to the following:

a) a) name of the test item;

© ISO 2023 - All rights reserved

#### ISO/<del>DISFDIS</del> 5286:<del>2022</del>2023(E)

- b) b) test purpose;
- c) c) time, place, and main test personnel;
- d) altitude of the test site;
- e) e) meteorological conditions (including weather, temperature, atmosphere pressure, relative humidity, wind direction, and wind speed);
- f) f)—type, serial number, and technical status of the test articles and apparatus;
- g) g) mission planning (flight route, height, flight duration, etc.);
- h) h) test acceptance criteria;
- i) i)—main problems identified during the test;
- j) j)—file management.

### 4.6 Test report

A test report should include but not be limited to the following:

- a) a) test overview;
- b) b) test items, procedures, and methods;
- c) c) the International Standard used (including its year of publication);
- d) d) test results, test data analysis, test acceptance criteria;
- e) e) any deviations from the test procedure;
- f) = any unusual features observed during the test;
- g) g)—the date of the test.

#### 5 Test methods

#### 5.1 Test items

The test items are listed in <u>Table 1</u>.

Table 1—\_\_Test items for fixed-wing UAS

| S/N | Test item                   | Reference                      |
|-----|-----------------------------|--------------------------------|
| 1   | Launch/take-off performance | <u>5.2.2<mark>5.2.1</mark></u> |
| 2   | Maximum take-off mass       | <u>5.2.3</u> <u>5.2.2</u>      |
| 3   | Climb performance           | 5.2.4 <mark>5.2.3</mark>       |
| 4   | Maximum achievable height   | <u>5.2.5<mark>5.2.4</mark></u> |

4

4