

ISO/IEC TS 29125

Edition 1.0 2020-05

TECHNICAL SPECIFICATION

AMENDMENT 1

Information technology – Telecommunications cabling requirements for remote powering of terminal equipment

(https://standards.iteh.ai)
Document Preview

ISO/IEC TS 29125:2017/Amd 1:2020

ttps://standards.iteh.ai/catalog/standards/iso/be28287d-1980-4fd0-b736-3f848c4b2b06/iso-jec-ts-29125-2017-amd-1-202

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@jec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and definitions clause of IEC publications issued between 2002 and 2015. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

Document Preview

ISO/IEC TS 29125:2017/Amd 1:2020

ttps://standards.iteh.ai/catalog/standards/iso/be28287d-1980-4fd0-b736-3f848c4b2b06/iso-iec-ts-29125-2017-amd-1-2020

ISO/IEC TS 29125

Edition 1.0 2020-05

TECHNICAL SPECIFICATION

AMENDMENT 1

Information technology – Telecommunications cabling requirements for remote powering of terminal equipment

Document Preview

ISO/IEC TS 29125:2017/Amd 1:2020

ttps://standards.iteh.ai/catalog/standards/iso/be28287d-1980-4fd0-b736-3f848c4b2b06/iso-iec-ts-29125-2017-amd-1-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 35.200 ISBN 978-2-8322-8310-3

Warning! Make sure that you obtained this publication from an authorized distributor.

FOREWORD

This amendment has been prepared by subcommittee 25: Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: Information technology.

The text of this amendment is based on the following documents:

DTS	Report on voting					
JTC1-SC25/2919/DTS	JTC1-SC25/2945/RVDTS					

Full information on the voting for the approval of this amendment can be found in the report on voting indicated in the above table.

INTRODUCTION to the amendment

This amendment incorporates changes necessary to include remote powering using single pair cabling.

(https://standards.iteh.ai) Document Preview

Introduction

Add the following at end of the last paragraph:

This document addresses the use of generic balanced single pair cabling for customer premises, to be specified in future amendments of the ISO/IEC 11801 series, for remote powering of terminal equipment. This document uses measurements and empirical models to estimate the thermal performance of single pair cable bundles of various conductor diameters.

1 Scope

Replace list item a) with the following:

- a) addresses the support of safety extra low voltage (SELV) and limited power source (LPS) applications that provide remote power over:
 - 4-pair balanced cabling in accordance with the reference implementations of ISO/IEC 11801 series standards using currents per conductor of up to 500 mA;
 - 1-pair balanced cabling using currents per conductor of up to 1 000 mA;

and targets the support of applications that provide remote power over balanced cabling to terminal equipment,

5 Cabling selection and performance

Replace the first paragraph with the following:

Cabling for remote powering can be implemented using 4-pair and 1-pair balanced cabling.

6.3 Temperature rise and current capacity

Add the following new paragraph after the third paragraph:

The maximum current per conductor for different temperature rise in a bundle of 37 cables of 1-pair cables with 0,57 mm diameter conductors, and 37 cords of 1-pair 0,40 mm cords with all pairs energized is shown in Table 5.

Replace the fourth paragraph with the following new paragraph:

Annex B provides an engineering model that may be used for specific cable types, cable constructions, and installation conditions to derive the bundle size for a particular current per conductor. Clause B.7 describes a simplified version of the engineering model in Annex B and was used to derive the worst case values in Tables 1 to 9 based on constants calculated from measurements of typical cables for each cable category or conductor diameter. The measurement procedures used to determine the constants are detailed in Annex F.

Replace the Table 1 title with the following new title:

Table 1 – Maximum current per conductor versus temperature rise in a 37 4-pair cable bundle in air and conduit

Add the following new Table 5 after Table 1:

Table 5 – Maximum current per conductor versus temperature rise in a 37 1-pair cable bundle in air and conduit

Temperature rise °C		or 0,57 mm diameter	Current per conductor 0,40 mm cords mA			
	air	conduit	air	conduit		
5	866_SO/IEC	TS 2917382017/A	nd 1:20608	518		
ls.iteh.7,5atalog/	standar 1 0610/be282	87d-19 9044fd0-b7.	6-31848 744 52b06/is	o-iec-ts 634125-201		
10	1 225	1 044	860	732		
12,5	1 370	1 167	961	819		
15	1 501	1 278	1 053	897		
17,5	1 621	1 381	1 137	969		
20	1 733	1 476	1 216	1 036		

Temperature rise above 10 $^{\circ}\text{C}$ shown in grey background is not recommended.

NOTE These values are based on conductor temperature measurement of typical cables and cords.

Replace the fifth paragraph with the following new paragraph:

Table 2 shows current capacity for different categories of 4-pair cable, independent of construction, for a given temperature rise. Table 6 shows current capacity for 1-pair cables of conductor diameters of cable, independent of construction, for a given temperature rise.

Add the following new Table 6 after Table 2:

Table 6 – Calculated worst case current per conductor versus temperature rise in a bundle of 37 1-pair cables of different conductor diameters in air and conduit

	0,32 mm 0,40 mm diameter		0,51 mm diameter		0,57 mm diameter		0,65 mm diameter		0,81 mm diameter		1,02 mm diameter				
ΔT	mA		ı	mA		mA		mA		mA		mA		mA	
°C	air	conduit	air	conduit	air	conduit	air	conduit	air	conduit	air	conduit	air	conduit	
2	307	262	384	327	490	417	548	466	624	532	779	663	981	835	
4	435	370	543	463	693	590	775	660	883	753	1 101	938	1 387	1 181	
6	533	454	666	567	849	723	949	808	1 082	922	1 349	1 149	1 699	1 446	
8	615	524	769	655	981	835	1 096	933	1 249	1 065	1 558	1 327	1 962	1 670	
10	688	586	860	732	1 096	934	1 225	1 044	1 397	1 190	1 742	1 484	2 194	1 867	
12	753	642	942	802	1 201	1 023	1 342	1 143	1 530	1 304	1 908	1 625	2 403	2 046	
14	814	693	1 017	867	1 297	1 105	1 450	1 235	1 653	1 409	2 061	1 755	2 596	2 210	
16	870	741	1 087	926	1 387	1 181	1 550	1 320	1 767	1 506	2 203	1 877	2 775	2 362	
18	923	786	1 153	983	1 471	1 253	1 644	1 400	1 874	1 597	2 337	1 991	2 943	2 506	
20	973	829	1 216	1 036	1 551	1 321	1 733	1 476	1 976	1 684	2 463	2 098	3 102	2 641	

Temperature rise above 10 °C shown in grey background is not recommended.

The values in this table are based on the implicit DC resistance derived from the insertion loss of the various conductor diameters of cable. Manufacturers' and/or suppliers' specifications give information relating to a specific cable.

NOTE The current per conductor for each 1-pair cable is also dependent on the cable construction.

6.4.3 Cable count within a bundle

https://standar.Replace the first paragraph with the following new paragraphs: 8c4b2b06/iso-iec-ts-29125-2017-amd-1-2020

This document uses 37-cable bundles as the basis for developing the temperature rise and current per conductor with all pairs energized. For other cases (e.g. where bundle count exceeds 37 cables), the guidelines provided in 6.4 can be used.

Refer to Table 3 to determine the maximum temperature rise using 500 mA per conductor for 4-pair cable bundles of different count.

Refer to Table 7 to determine the maximum temperature rise using 1 000 mA per conductor for 1-pair cable bundles of different count.