INTERNATIONAL STANDARD

Second edition 2021-12

Corrected version 2022-06

Steel — Conversion of elongation values —

Part 2: Austenitic steels

Acier — Conversion des valeurs d'allongement — Partie 2: Aciers austénitiques

(standards.iteh.ai)

<u>ISO 2566-2:2021</u> https://standards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-2566-2-2021

Reference number ISO 2566-2:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2566-2:2021</u>

https://standards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-2566-2-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	vord		iv
Introd	luction		v
1	Scope		1
2	Norm	ative references	1
3	Terms 3.1 3.2	s, definitions and symbols Terms and definitions Symbols	1
4	Basic	formula	2
5	Requi	rements on conversions	2
6		ersion from one proportional gauge length to another proportional gauge	3
7		ersion from one non-proportional gauge length to another non-proportional length for test pieces of equal cross-sectional area	3
8		rsion from a non-proportional gauge length to another non-proportional length for test pieces of different cross-sectional areas	4
9	Conve 9.1	rsion from a proportional gauge length to a non-proportional gauge length	4 4
	9.2	Conversion factors from $5,65\sqrt{S_0}$ to non-proportional gauge length	4
	9.3 9.4	Conversion factors from $4\sqrt{S_0}$ to non-proportional gauge length Elongation values	7 10
10 http	Use of s://stanc	Figures ISO 2566-2:2021 lards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-	26

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 17, *Steel*, Subcommittee SC 20, *General technical delivery conditions, sampling and mechanical testing methods,* in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 459/SC 1, *Test methods for steel (other than chemical analysis),* in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 2566-2:1984), of which it constitutes a minor revision. The changes are as follows:

- complete editorial revision;
- <u>Tables 2</u> to <u>5</u> have been renamed due to reordering in order to follow the logical flow of information of this document;
- <u>Clause 9</u> has been restructured into four sub-clauses in order to follow the logical flow of information of this document.

A list of all parts in the ISO 2566 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

This corrected version of ISO 2566-2:2021 incorporates the following corrections:

 two of the values given in <u>Table 1</u> were incorrect: the value "0,931" was replaced with "0,913" and the value "1,987" was replaced with "0,987".

Introduction

Several different gauge lengths are commonly in use for the determination of percentage elongation of steels in tensile testing. Fixed gauge lengths of 50 mm, 80 mm, 100 mm and 200 mm are used; proportional gauge lengths of $k\sqrt{S_0}$ are also used for flat and round test pieces, where *k* may be one of a number of values, i.e. 4; 5,65; 8,16 or 11,3.

The value $5{,}65{\sqrt{S_0}}$ is adopted as the internationally preferred proportional gauge length.

Arising from this choice and the existence of specifications stipulating minimum percentage elongations on different gauge lengths, a growing need has been evident for an International Standard that could be used to convert test results into values based on the different gauge lengths. Accordingly, this document includes tables of conversion factors, tables of actual conversions for some of the most commonly used gauge lengths and elongation values, and figures which may also be used for such conversions. When using these conversions, however, note should be taken of the limitations on their applicability as stated in <u>Clause 1</u>.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2566-2:2021</u> https://standards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-2566-2-2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2566-2:2021

https://standards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-2566-2-2021

Steel — Conversion of elongation values —

Part 2: Austenitic steels

1 Scope

This document specifies a method of converting room temperature percentage elongations after fracture obtained on various proportional and non-proportional gauge lengths to other gauge lengths.

Formula (1), on which conversions are based, is considered to be reliable when applied to austenitic stainless steels within the tensile strength range 450 to 750 N/mm^2 and in the solution treated condition.

These conversions are not applicable to:

- a) cold reduced steels;
- b) quenched and tempered steels;
- c) non-austenitic steels. STANDARD PREVIEW

These conversions are not applicable when the gauge length exceeds $25\sqrt{S_0}$ or where the width to thickness ratio of the test piece exceeds 20.

SO 2566-2:2021

2 hNormative references /standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-

There are no normative references in this document.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1.1 gauge length

length of the parallel portion of the test piece used for measurement of strain

Note 1 to entry: The term is hereafter used in this document to denote the original gauge length, L_0 , marked on the test piece for the determination of percentage elongation after fracture, A.

3.1.2

proportional gauge length

gauge length (3.1.1) having a specified relation to the square root of the cross-sectional area, for example $5{,}65{\sqrt{S_0}}$

3.1.3

non-proportional gauge length

gauge length (3.1.1) not specifically related to the cross-sectional area of the test piece, usually expressed in a given dimension, for example 50 mm

3.2 Symbols

- *A* Percentage elongation after fracture on a gauge length, obtained on test
- $A_{\rm r}$ Percentage elongation on a different gauge length, required by conversion
- *d* Diameter of test piece
- L_0 Original gauge length
- S_0 Original cross-sectional area of test piece

4 Basic formula

The data contained in this document are based on a formula obtained from a statistical assessment of international test results, which, in a simplified form, can be expressed as <u>Formula (1)</u>:

$$A_{\rm r} = 1,25A \left(\frac{\sqrt{S}_0}{L_0}\right)^{0,127}$$
 (1)

where

 $A_{\rm r}$ is the required elongation on gauge length L_0 ;

A ht is the elongation on gauge length of $5,65\sqrt{S_0}$; 62eb-2985-4312-84cb-a6960455cdef/iso-

 L_0 is the original gauge length; 2566-2-

 S_0 is the original cross-sectional area of test piece.

Expressed in terms of $4\sqrt{S_0}$, Formula (1) becomes Formula (2):

$$A_{\rm r} = 1,19A \left(\frac{\sqrt{S}_0}{L_0}\right)^{0,127}$$
(2)

where *A* is the elongation on gauge length of $4\sqrt{S_0}$.

Tables 1 to 21 and Figures 1 to 5 are based on Formulae (1) and (2).

Care should be exercised in the case of strip under 3 mm thickness, as the index in <u>Formulae (1)</u> and (2) increases with decreasing thickness; the value to be used shall be the subject of agreement between the customer and the supplier.

5 Requirements on conversions

While, as indicated, the conversions are considered to be reliable within the stated limitations, because of the various factors influencing the determination of percentage elongations, they shall be used for acceptance purposes only by agreement between the customer and supplier.

In cases of dispute, the elongation shall be determined on the gauge length stated in the relevant specification.

6 Conversion from one proportional gauge length to another proportional gauge length

Simple multiplying factors based on the formula are used for such conversions, and the relationships between a number of the more widely used proportional gauge lengths are given in <u>Table 1</u>. Detailed conversions of elongations obtained on $4\sqrt{S_0}$ to $5{,}65\sqrt{S_0}$ are given in <u>Table 2</u>.

Conversion	Factor for conversion to:								
from:	$4\sqrt{S_0}$	$5,65\sqrt{S_0}$	$8,16\sqrt{S_0}$	11,3 $\sqrt{S_0}$	4 <i>d</i>	5 <i>d</i>	8 <i>d</i>		
$4\sqrt{S_0}$	1,000	0,957	0,913	0,876	0,985	0,957	0,902		
$5,65\sqrt{S_0}$	1,045	1,000	0,954	0,916	1,029	1,000	0,942		
$8,16\sqrt{S_0}$	1,095	1,048	1,000	0,959	1,078	1,048	0,987		
11,3 $\sqrt{S_0}$	1,141	1,092	1,042	1,000	1,124	1,092	1,029		
4 <i>d</i>	1,015	0,972	0,928	0,890	1,000	0,972	0,916		
5 <i>d</i>	1,045	1,000	0,954	0,916	1,029	1,000	0,942		
8 <i>d</i>	1,109	1,061	1,013	0,972	1,092	1,062	1,000		

Table 1 — Conversion factors: Proportional gauge length

Table 2 — Elongation values^a on 5,65 $\sqrt{S_0}$ corresponding to those obtained on $4\sqrt{S_0}$ gauge

length

Actual elongation (%) measured on		(500	Сот	respondi	ng elonga	ation (%)	on 5,65 √	$\overline{S_0}$		
$4\sqrt{S_0}$	0	1	<u>280</u>	2563-2:	2024	5	6	7	8	9
https://otandards	.ite101	catal <u>11</u> /stan	da <u>r1</u> ls/s	ist/72336	2el1329	85-41412-	8495-86	960 <u>16</u> 50	def <u>17</u> 0-	18
20	19	20	21 23	566- <u>22</u> -20	21 23	24	25	26	27	28
30	29	30	31	32	33	33	34	35	36	37
40	38	39	40	41	42	43	44	45	46	47
50	48	49	50	51	52	53	54	55	56	56
^a Factor 0,957. Valu	ues roun	ded to neares	t whole	number.						

7 Conversion from one non-proportional gauge length to another nonproportional gauge length for test pieces of equal cross-sectional area

The conversion of elongation values of different fixed gauge lengths on test pieces of equal crosssectional area are also made by simple factors. Conversion factors for gauge lengths of 50, 80, 100 and 200 mm are given in <u>Table 3</u>.

Conversion from:	Factor for conversion to:					
Conversion nom:	50 mm	80 mm	100 mm	200 mm		
50 mm	1,000	0,942	0,916	0,839		
80 mm	1,062	1,000	0,972	0,890		
100 mm	1,092	1,029	1,000	0,916		
200 mm	1,193	1,123	1,092	1,000		
^a Provided cross-section	onal areas are the same.					

Table 3 — Conversion factors^a: Non-proportional gauge length

8 Conversion from a non-proportional gauge length to another non-proportional gauge length for test pieces of different cross-sectional areas

It is preferable for this calculation to be made in two stages with an initial conversion to $5{,}65\sqrt{S_0}$. EXAMPLE

Elongation of 24 % on 200 mm for a 40 mm x 15 mm test piece in terms of equivalent on a 30 mm x 10 mm test piece with gauge lengths equal to 200 mm, 100 mm and 50 mm.

 $24 \ge 1/0.957 = 25.1 \%$ on $5.65\sqrt{S_0}$ (see Table 3) $25.1 \ge 0.916 = 23.0 \%$ on 30 mm x 10 mm with 200 mm gauge length $25.1 \ge 1.000 = 25.1 \%$ on 30 mm x 10 mm with 100 mm gauge length $25.1 \ge 1.093 = 27.4 \%$ on 30 mm x 10 mm with 50 mm gauge length Elongation on other proportional gauge lengths can be obtained by using the factors given in Table 1.

9 Conversion from a proportional gauge length to a non-proportional gauge length

9.1 General

The conversion factors are variable according to the cross-sectional area of the non-proportional test piece. Table 4 gives the multiplying factors for conversion from elongation on $5,65\sqrt{S_0}$ to the equivalent on fixed gauge lengths of 50 mm, 80 mm, 100 mm and 200 mm for a range of cross-sectional areas. For conversions in the reverse direction, i.e. elongation on a fixed gauge length to the equivalent of $5,65\sqrt{S_0}$, the reciprocal of the factors is used.

EXAMPLE https://standards.iteh.ai/catalog/standards/sist/783362eb-2985-4312-84cb-a6960455cdef/iso-2566-2-2021

— Elongation of 20 % on $5{,}65\sqrt{S_0}$ is equivalent to 20 x 1,046 = 20,9 % on a 25 mm wide test piece of 6 mm thickness with a 50 mm gauge length (see <u>Table 3</u>).

From the example shown, it will be seen that conversions involving other proportional gauge lengths can be obtained by prior or subsequent use of the factors shown in <u>Table 1</u>.

9.2 Conversion factors from $5{,}65\sqrt{S_0}$ to non-proportional gauge length

Factors shown under "non-proportional gauge length" give the value of

$$1,25\left(\frac{\sqrt{S_0}}{L}\right)^{0,127}$$

To convert from values on a gauge length of $5{,}65\sqrt{S_0}$ to a non-proportional gauge length, multiply by the appropriate factor.

To convert from values on a non-proportional gauge length to $5{,}65\sqrt{S_0}$ divide by the appropriate factor.

See also Figures 1 and 2.

Cross sectional area of test piece:	I	Factor for non-propor	tional gauge length of	:
mm ²	200 mm	100 mm	80 mm	50 mm
5	0,706	0,771	0,794	0,842
10	0,738	0,806	0,829	0,880
15	0,757	0,827	0,851	0,903
20	0,771	0,842	0,867	0,920
25	0,782	0,854	0,879	0,933
30	0,792	0,864	0,889	0,944
35	0,779	0,873	0,898	0,953
40	0,806	0,880	0,906	0,961
45	0,812	0,887	0,912	0,969
50	0,818	0,893	0,919	0,975
55	0,823	0,898	0,924	0,981
60	0,827	0,903	0,929	0,986
70	0,835	0,912	0,938	0,996
80	0,842	0,920	0,946	1,005
90	0,849	0,927	0,953	1,012
100	0,854	0,933	0,960	1,019
110	0,860	0,939	0,966	1,025
120	0,864	0,944	0,971	1,031
130	0,869	0,949	0,976	1,036
140	0,873	0,953	0,981	1,041
150 150 150 150 150 It	h.a./cat0,877 tandard	s/sist/780,957eb-2985	0,985 ^{-a696043}	5cdet/1,045
160	0,880	2566-20,961	0,989	1,050
170	0,884	0,965	0,993	1,054
180	0,887	0,969	0,996	1,058
190	0,890	0,972	1,000	1,061
200	0,893	0,975	1,003	1,065
210	0,896	0,978	1,006	1,068
220	0,898	0,981	1,009	1,071
230	0,901	0,984	1,012	1,074
240	0,903	0,986	1,015	1,077
250	0,906	0,989	1,017	1,080
260	0,908	0,991	1,020	1,083
270	0,910	0,994	1,022	1,085
280	0,912	0,996	1,025	1,088
290	0,914	0,998	1,027	1,090
300	0,916	1,000	1,029	1,093
310	0,918	1,003	1,031	1,095
320	0,920	1,005	1,033	1,097
330	0,922	1,007	1,035	1,099
340	0,923	1,008	1,037	1,101
350	0,925	1,010	1,039	1,103
360	0,927	1,012	1,041	1,105

Table 4 — Conversion factors from 5,65 $\sqrt{S_0}$ to non-proportional gauge lengths

Cross sectional area of test piece:	Factor for non-proportional gauge length of:						
mm ²	200 mm	100 mm	80 mm	50 mm			
370	0,928	1,014	1,043	1,107			
380	0,930	1,016	1,045	1,109			
390	0,932	1,017	1,047	1,111			
400	0,933	1,019	1,048	1,113			
410	0,935	1,021	1,050	1,114			
420	0,936	1,022	1,051	1,116			
430	0,937	1,024	1,053	1,118			
440	0,939	1,025	1,055	1,119			
450	0,940	1,027	1,056	1,121			
460	0,941	1,028	1,058	1,123			
470	0,943	1,029	1,059	1,124			
480	0,944	1,031	1,060	1,126			
490	0,945	1,032	1,062	1,127			
500	0,946	1,033	1,063	1,129			
550	0,952	1,040	1,070	1,135			
600	0,957	1,045	1,076	1,142			
650	0,962	1,051	1,081	1,148			
700	0,967 (St	and _{1,056} d.S.I	teh 1,086	1,153			
750	0,971	1,060	1,091	1,158			
800	0,975	IS1,06566-2:20		1,163			
850ps://stanila	urds.ite 0,979 atalog/s	tandard 1,069783362 6		a69604 1,167 fiso-			
900	0,982	1,073-2-2021	1,104	1,171			
950	0,986	1,076	1,107	1,176			
1 000	0,989	1,080	1,111	1,179			
1 050	0,992	1,083	1,114	1,183			
1 100	0,995	1,087	1,118	1,187			
1 150	0,998	1,090	1,121	1,190			
1 200	1,000	1,093	1,124	1,193			
1 250	1,003	1,095	1,127	1,196			
1 300	1,006	1,098	1,130	1,199			
1 350	1,008	1,101	1,132	1,202			
1 400	1,010	1,103	1,135	1,205			
1 450	1,013	1,106	1,138	1,208			
1 500	1,015	1,108	1,140	1,210			
1 550	1,017	1,110	1,142	1,213			
1 600	1,019	1,113	1,145	1,215			
1 650	1,021	1,115	1,147	1,217			
1 700	1,023	1,117	1,149	1,220			
1 750	1,025	1,119	1,151	1,222			
1 800	1,027	1,121	1,153	1,224			
1 850	1,028	1,123	1,155	1,226			
1 900	1,030	1,125	1,157	1,228			

 Table 4 (continued)

Cross sectional area of test piece:		Factor for non-propor	tional gauge length o	f:
mm ²	200 mm	100 mm	80 mm	50 mm
1 950	1,032	1,127	1,159	1,230
2 000	1,033	1,129	1,161	1,232
2 050	1,035	1,130	1,163	1,234
2 100	1,037	1,132	1,165	1,236
2 150	1,038	1,134	1,166	1,238
2 200	1,040	1,135	1,168	1,240
2 250	1,041	1,137	1,170	1,242
2 300	1,043	1,139	1,171	1,243
2 350	1,044	1,140	1,173	1,245
2 400	1,045	1,142	1,175	1,247
2 450	1,047	1,143	1,176	1,248
2 500	1,048	1,145	1,178	1,250
2 550	1,050	1,146	1,179	1,252
2 600	1,051	1,148	1,181	1,253
2 650	1,052	1,149	1,182	1,255
2 700	en 1,053	1,150 PK	1,183	1,256
2 750	1,055	1,152	1,185	1,258
2 800	1,056	arc_{1,153} ten	al) 1,186	1,259
2 850	1,057	1,154	1,187	1,260
2 900	1,058	<u>ISO 256(1,156)21</u>	1,189	1,262
https:2.950dards.ite	eh.ai/cat1,059 tanda	urds/sist/78 1,157 eb-2985	5-4312- 1,190-a 69604	55cdef/1,263
3 000	1,060	2566-21,1581	1,191	1,265

 Table 4 (continued)

9.3 Conversion factors from $4\sqrt{S_0}$ to non-proportional gauge length

Factors shown under "non-proportional gauge length" give the value of

$$1,19\left(\frac{\sqrt{S}_0}{L}\right)^{0,127}$$

To convert from values on a gauge length of $4\sqrt{S_0}$ to a non-proportional gauge length, multiply by the appropriate factor.

To convert from values on a non-proportional gauge length to $4\sqrt{S_0}$, divide by the appropriate factor. See also Figures 3 and 4.