INTERNATIONAL STANDARD

ISO 5556

First edition 2023-06

Ships and marine technology — Seagoing vessels — Single-drum winches for oceanographic research

Navires et technologie maritime — Navires de haute mer — Treuils de recherche océanographique à tambour simple

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5556:2023

https://standards.iteh.ai/catalog/standards/sist/75ee6c7e-8125-4e79-8e9b-ed343e3a7e6b/iso-5556-2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5556:2023 https://standards.iteh.ai/catalog/standards/sist/75ee6c7e-8125-4e79-8e9b

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Foreword		Page
		iv
1	Scope	1
2	Normative references	1
3	Terms and definitions 3.1 Technical terms 3.2 Terms related to winch types	
4	Design and constructions 4.1 General requirements 4.2 Strength requirements 4.3 Drum design 4.4 Spooling device 4.5 Drive device 4.6 Brake device 4.7 Speed control 4.8 Alarm function 4.9 AHC function (optional) 4.10 Control system and operation parameters display 4.11 Subsidiary equipment 4.11.1 Tension measuring device 4.11.2 Speed measuring device 4.11.3 Rope length measurement device	3 4 4 4 4 5 5 5 5 6 6 6 6
5	Acceptance tests 5.1 General 5.2 Function test 5.3 Static load test 5.4 Dynamic load test 5.5 AHC test 5.6 Inspection documentation project during the test period	6
6	Designation	7
7	Marking	8
Ann	nex A (informative) Recommended dynamic factor	9
	oliography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 4, *Outfitting and deck machinery*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Ships and marine technology — Sea-going vessels — Single-drum winches for oceanographic research

1 Scope

This document specifies requirements for the design, construction, safety, performance and acceptance testing of single-drum winches for oceanographic research (hereafter referred as to "single-drum winches") with hydraulic or electric drive.

Single-drum winches are mainly used for fixed-point and towing marine survey, involving marine geological sampling, seawater water body parameter measurement and marine biological survey.

2 **Normative references**

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3828, Shipbuilding and marine structures — Deck machinery — Vocabulary and symbols

ISO 4413, Hydraulic fluid power — General rules and safety requirements for systems and their components

ISO 7825, Shipbuilding — Deck machinery — General requirements

IEC 60092 (all parts), Electrical installations in ships

IEC 60529, Degrees of protection provided by enclosures (IP Code)

Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3828 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1 Technical terms

safe working load

maximum static load, under design operation sea state, which the winch is certified to recover while the rope is at the first layer of the drum

nominal speed

maximum speed while the winch recovering the safe working load (3.1.1) and the rope is at the first layer of the drum

3.1.3

top layer working load

TWL maximum static load, under design operation sea state, which the winch is certified to recover while the rope is at the top layer of the drum

3.1.4

top layer speed

maximum speed while the winch recovering the top layer working load (3.1.3) and the rope is at the top laver of the drum

3.1.5

dvnamic factor

variable factor representing the dynamic effects induced due to the ship motion including rolling, pitch and heaving, while the winch is working under the design operation sea states, and by which the safe working load (3.1.1) is multiplied to represent the load on the system due to all dynamic effects

Note 1 to entry: Note1 to entry: The value of dynamic factor is referenced in Annex A.

holding load

maximum static load on the winch which the brake can withstand

3.2 Terms related to winch types

3.2.1

left-hand winch of horizontal spooling rope

winches where, the drive unit is located on the left side of drum, and the rope's pull-out direction is perpendicular to the drum axis

Note 1 to entry: See Figure 1 a).

STANDARD PREVIEW

standards.iteh.ai) right-hand winch of horizontal spooling rope

winches where, the winch drive unit is located on the right side of drum, and the rope's pull-out direction is perpendicular to the drum axis at a log/standards/sist/75ee6c7e-8125-4e79-8e9b

Note 1 to entry: See Figure 1 b).

3.2.3

LVR winch

winches where, the drive unit is located on the left side of drum, and the rope's pull-out direction is parallel to the drum axis, and the rope is to the right side

Note 1 to entry: See Figure 1 c).

3.2.4

RVR winch

winches where, the drive unit is located on the right side of drum, and the rope's pull-out direction is parallel to the drum axis, and the rope is to the right side

Note 1 to entry: See Figure 1 d).

3.2.5

LVL winch

winches where, the drive unit is located on the left side of drum, and the rope's pull-out direction is parallel to the drum axis, and the rope is to the left side

Note 1 to entry: See Figure 1 e).

3.2.6 RVL winch

winches where, the drive unit is located on the right side of drum, and the rope's pull-out direction is parallel to the drum axis, and the rope is to the left side

Note 1 to entry: See Figure 1 f).

a) Left-hand winch of horizontal spooling rope b) Right-hand winch of horizontal spooling rope

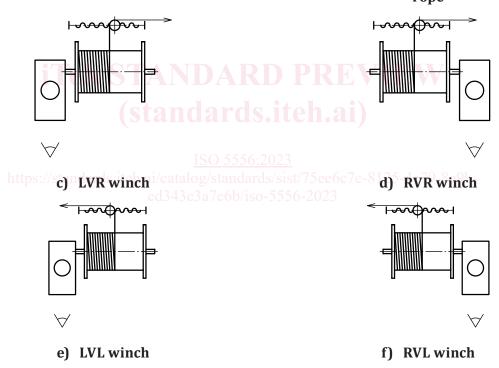


Figure 1 — Typical winch types

4 Design and constructions

4.1 General requirements

Single-drum winches shall meet the general requirements for deck equipment in accordance with $ISO\ 7825$.

4.2 Strength requirements

- **4.2.1** Under maximum load conditions, the calculated allowable stresses of structure parts shall not greater than 0,45 times of the material upper yield strength, $R_{\rm eH}$, or 0,2 % of the specified non-proportional elongation yield strength, $R_{\rm n0.2}$.
- NOTE Maximum load is the product of SWL and dynamic factor.
- **4.2.2** Under the holding load condition, the calculated allowable stresses of related part shall not be greater than 0,9 times of the material upper yield strength, $R_{\rm eH}$, or 0,2 % of the specified non-proportional elongation yield strength, $R_{\rm p0,2}$.
- **4.2.3** Holding load shall not be less than the product of SWL and dynamic factor. When dynamic factor is less than 1,5, hold load is 1,5 times SWL.

4.3 Drum design

- **4.3.1** The ropes or cables used for marine survey include: steel wire ropes, electro-mechanical cables, optical fibre cables and synthetic fibre ropes.
- **4.3.2** For steel wire ropes, the diameter of the drum shall not be less than 16 times the diameter of the wire ropes. For electro-mechanical cables, optical fibre cables and synthetic fibre ropes, the ratio of the drum diameter to the rope or cable diameter shall meet the requirements of the rope or cable manufacturer.
- **4.3.3** The distance between the top layer rope and edge of flange shall not be less than 2,5 times the diameter of the rope.

ISO 5556:2023

- **4.3.4** In normal working conditions, the remaining rope on the drum shall not be less than 5 laps.
- **4.3.5** The barrel of the drum shall be equipped with a groove shell for reeling up over 3 layers to ensure the smoothness of the rope.

4.4 Spooling device

- **4.4.1** The winch shall be equipped with the spooling device. The spooling device can be independently driven by a hydraulic motor or electric motor, or driven by a drum through a transmission device to ensure that the rope is smooth, free of rope jumping, traps and other defects.
- **4.4.2** For steel wire ropes, the diameter of the rope guide sheaves shall not be less than 16 times the diameter of the rope. For electro-mechanical cables, optical fibre cables and synthetic fibre ropes, the ratio of the diameter of the rope or cable guide sheaves to the diameter of the rope or cables shall meet the requirements of the rope or cable manufacturer.

4.5 Drive device

- **4.5.1** Electric power drive and control equipment shall be in accordance with of the IEC 60092 series, The minimum protection level of electrical equipment on the deck shall meet the requirement of IP56 as specified in IEC 60529.should meet the requirements of IP56 in IEC 60529.
- **4.5.2** Hydraulic drive and control equipment shall be in accordance with ISO 4413.

- **4.5.3** Winch drive device shall meet the following requirements:
- a) The winch shall be driven by an independent driving device and shall be able to control the reversing and rotating speed of the winch.
- b) Under the conditions of safe working load and nominal line speed, the drive device shall be able to drive the winch to run continuously, and the continuous running time shall generally not be less than 30 min. The continuous running time under safe working load and nominal line speed shall be determined by the purchaser and the manufacturer.
- c) The drive device shall have overload protection.

4.6 Brake device

- **4.6.1** The winch is equipped with a normally closed braking device. When the winch is in a normal stop state, braking state, or the winch loses power, the braking device is in an active state.
- **4.6.2** Braking devices should avoid excessive impact load.
- **4.6.3** The braking device shall be able to resist the maximum torque by hold load and the stressed parts shall not be damaged.

4.7 Speed control

The speed of the winch rendering and recovering shall be able to adjusted steplessly between zero and maximum speed. It shall also be able to be adjusted during the winch rendering and recovering operation.

4.8 Alarm function

The winch shall be equipped with visual and audible alarm devices, such as misoperation warning, overload, overspeed and insufficient rope margin. For the hydraulic drive winch, it should also have high oil temperature, low liquid level, filter blockage alarm and other functions.

4.9 AHC function (optional)

The active heave compensation (AHC) function is designed to reduce the influence of sea wave motion on the operation task and ensure the smooth operation of oceanographic research. The active heave compensation system can compensate the heave motion of the rope end equipment caused by the influence of wave on the ship.

4.10 Control system and operation parameters display

- **4.10.1** The winch shall be equipped with local control device, which can be configured with long-range control or portable remote control according to customer needs.
- **4.10.2** The control panel shall display the operation information such as the length of the storage rope, rope speed, rope tension and fault alarm in real time.
- **4.10.3** The direction of movement of all control mechanisms shall be permanently marked, with the handle drawn to the operator as the rope, and vice versa. The handle should automatically return to the stop position when released.
- **4.10.4** If the control mechanism adopts a handle, the movement direction of the handle shall be provided with a permanent indicating mark. The handle is pulled to the operator for rope recovering, and vice versa. The handle should automatically return to the stop position when released.

4.11 Subsidiary equipment

4.11.1 Tension measuring device

The winch shall be equipped with a continuous rope tension monitoring device for real-time measurement of rope tension during rope recovering, rope rendering and braking operations.

4.11.2 Speed measuring device

The winch shall be equipped with a continuous rope speed monitoring device for real-time measurement of rope speed during recovering operation.

4.11.3 Rope length measurement device

The winch shall be equipped with a continuous rope length monitoring device for real-time measurement of the rope length during winch operation.

5 Acceptance tests

5.1 General

Tests shall be completed before the buyer accepts the winch. Subject to the approval of the buyer and manufacturer, part of the test may be carried out on board.

5.2 Function test

Under the condition of no-load, operate the winch for 10 min respectively in the direction of rope recovering and rendering. During the test, the stepless speed change test from zero to rated speed is completed through the control system.

https://standards.iteh.ai/catalog/standards/sist/75ee6c7e-8125-4e79-8e9b-

5.3 Static load test

The rope end is loaded with test load, and there is no slippage of the drum within 2 min. All stressed parts are not damaged.

When dynamic factor is less than 1,25, test load is 1,25 times SWL. When the dynamic factor is greater than 1,25, test load is not less than the product of SWL and the dynamic factor.

NOTE For electro-mechanical cables and optical fibre cables, the test can be performed with steel wire ropes or synthetic fibre rope with same diameter.

5.4 Dynamic load test

- **5.4.1** Under SWL, recovering the rope at nominal line speed, the winch runs smoothly and normally.
- **5.4.2** The dynamic load test is carried out with 1,25 times SWL, low-speed lifting, low-speed lowering, and repeated twice. The brake test is carried out during the test operation.

5.5 AHC test

If the winch is equipped with AHC function, an active wave compensation test is necessary. The active wave compensation performance of the winch is tested by transmitting the information of the winch's heave motion due to sea states.

NOTE The content of the active wave compensation test is subject to the approval of the buyer and the manufacture.