INTERNATIONAL STANDARD

Reciprocating internal combustion engines : Performance – Part IV : Speed governing

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION+MEXCHAPOCHAR OPFAHUSALUM TIO CTAHCAPTUSALUM+ORGANISATION INTERNATIONALE DE NORMALISATION

Moteurs alternatifs à combustion interne : Performance – Partie IV : Régulation de la vitesse iTeh STANDARD PREVIEW

First edition - 1978-09-01

<u>ISO 3046-4:1978</u> https://standards.iteh.ai/catalog/standards/sist/f0482220-8af8-45d0-b19e-3d82b96388ff/iso-3046-4-1978

(standards.iteh.ai)

UDC 621.43.01 : 62-531.6

Ref. No. ISO 3046/IV-1978 (E)

3046 / IV

Descriptors : internal combustion engines, reciprocating engines, variable speed drives, speed measurement, classifying.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3046/IV was developed by Technical Committee ISO/TC 70, *Internal combustion engines*, and was circulated to the member bodies in May 1977.

(standards.iteh.ai)

It has been approved by the member bodies of the following countries :

		ISO 3046-4:1978
Australia	hnelie/standards.iteh.ai/cata	osouthaAfricar/Rep2210-8af8-45d0-b19e-
Austria	Ireland 3d82b	96 Spain iso-3046-4-1978
Belgium	Italy	Switzerland
Bulgaria	Japan	Turkey
Chile	Korea, Dem. P. Rep. of	United Kingdom
Czechoslovakia	Korea, Rep. of	U.S.A.
Denmark	Mexico	U.S.S.R.
France	Netherlands	Yugoslavia
Germany	Romania	

No member body expressed disapproval of the document.

© International Organization for Standardization, 1978 •

Printed in Switzerland

Reciprocating internal combustion engines : Performance — Part IV : Speed governing

1 SCOPE

This International Standard establishes a classification for the requirements and parameters of speed governing systems for reciprocating internal combustion engines. Where necessary, individual requirements may be given for particular engine applications.

2 FIELD OF APPLICATION

This International Standard applies to reciprocating internal combustion engines for land, rail-traction and marine use, excluding engines used to propel road construction and earth-moving machines, agricultural and industrial types of tractors, automobiles and trucks and aero-engines. Also, excluded are self-governing engines and those engines requiring only maximum speed or fuel delivery limitation.

iso-3046-4-1978

3 REFERENCES

ISO 3046/1, Reciprocating internal combustion engines : Performance - Part I : Standard reference conditions and declarations of power, fuel consumption and lubricating oil consumption.

ISO 3046/II, Reciprocating internal combustion engines : Performance - Part II : Test methods.

ISO 3046/III, Reciprocating internal combustion engines : Performance - Part III : Test measurements.

4 CLASSIFICATION OF GOVERNING SYSTEMS

4.1 The classification of governing systems is based on :

- a) the speed conditions to be controlled (table 1);
- b) the accuracy of governing (table 2).

4.1.1 Suivant la plage de vitesse, trois types de régulation sont définis dans le tableau 1.

Governing of a selected speed or speeds is provided within prescribed limits of precision in accordance with table 1.

TABLE 1 –	Types of	governing
-----------	----------	-----------

Туре	Speed requirement
1 Single speed	At one predetermined speed
2 Multiple speeds	At two or more predetermined speeds
3 All speeds (variable speed)	At any selected speed within a pre- determined speed range

4.1.2 The class of accuracy and the necessary parameters of this class required for a particular application shall be selected from tables 2 and 3 by agreement between the manufacturer and the customer, taking into account that not all kinds of engines (for example dual fuel engines, spark ignition gas engines, etc.) are capable of meeting all

TABLE 2 - Governing accuracy

Class	Accuracy requirement
A ₀	Highest requirements of governing accuracy
A ₁	High requirements of governing accuracy
A ₂	Normal requirements of governing accuracy
B ₁	Normal requirements of governing accuracy over a wide range of speed
B ₂	Reduced requirements of governing accuracy over a wide range of speed

NOTE - Class A usually refers to the single speed type of governor.

5 TECHNICAL REQUIREMENTS OF GOVERNING SYSTEMS

The requirements for the parameters of the governing system are given in table 3.

The manufacturer shall state the normal period of time required after the start of the engine to establish controllability within the limits specified in table 3.

Where special circumstances prevent attainment of the normal period, or where a reduced period is essential, the periods of time and the technical measures to be taken as a consequence shall be subject to mutual agreement between the manufacturer and the customer (AMC).

:							Class ¹⁾		
20.	rameter	Definition	Symbol	Formula	A ₀	A1	A2	8,	B 2
-	2	£	4	2	9	۲	8	6	10
5.1	Setting parameters								
5.1.1	Range of speed setting (See figure 3)		https	1					
5.1.1.1	Upward range	The range of maximum possible upward adjustment of speed from the setting corresponding to the declared power, as a percentage of the declared speed	tandard	$\frac{n_{i}}{n}$ $\frac{n_{i}}{n}$ $\times 100$		≥ 2,5	≥ 2,5	о Л	0 ∧
5.1.1.2	Downward range	The range of maximum possible downward adjustment of speed from the setting corres- ponding to the declared power, as a percentage of the declared speed	s ≹eh.ai/cat 3d821	oot× ^{min} ×100 Star		≥ δ _{st} + 2,5	≥ δ _{st} + 2,5	AMC ²⁾	AMC
5.1.2	Speed setting	Maximum difference between real and predetermined speeds under remote control, expressed as a percentage of the declared	<u>ISO 304</u> alog/stanc 596388ff/	NDA Idar		not applicable	not applicable	7	± 2
5.2	Parameters of steady state behaviour		<u>46-4:197</u> lards/sist iso-3046	RD ds.it			· · · · · ·		
5.2.1	Steady state speed band	Width of the envelope of variation of the engine speed under steady state conditions, expressed as a percentage of the declared speed	/ <u>8</u> /f0482220- -4-1978	PRE ceh.ai				<u></u>	
5.2.1.1	Relative power ≥ 25 %		-8at	:V)		≤ 0,8	≤ 1,0		
5.2.1.2	Relative power < 25 %		8-4	1		≤ 1,0	≤ 1,5		
5.2.1.3	Relative speed ≥ 50 %		5d0	EN			•	≤ 1,5	≤ 2,0
5.2.1.4	Relative speed < 50 %)-b1					AMC	AMC
5.2.2	Speed droop ³⁾	Speed change between zero and declared power, expressed as a percentage of the declared speed at fixed speed setting	-96	$\frac{n_i - n_r}{n_r} \times 100$		∨ V	∞ ∀	₹ 10	× 15

TABLE 3 - Parameters of governing systems (Refer to figure 1 for explanatory diagram and list of symbols)

1), 2), 3) : see page 4.

ISO 3046/IV-1978 (E)

× 18 × 18 2 × 18 18 ത 15 ≤ 15 ≤ 15 15 ω ≷ 10 ≥ 10 80 \/∕ **∞** ∨⁄ ~ ø -×100 ×100 n_{max}n ģ S VIEW 2 PRE i " mmu ards.iteh.ai) د ISO 3046-4:1978 Sttps://stateards.iteh.ai/salog/standards/sist/f0482220-8af8-45d0-b19eb 4 3d82b96388ff/iso-3046-4-1978 The time interval from the point when the band after the load change until the speed load change from speed previous to steady speed departs from the steady state speed returns to and remains within the steady state speed band, associated with the new Maximum deviation of speed after sudden load (see figure 1); expressed in seconds state level, expressed as a percentage of the declared speed (figure 1) e mean effective pressure 2-stroke engines : AMC other charge systems : At conditions of 5.3.1.2 At conditions of 5.3.1.1 at the declared power sudden increase in load function of the brake Parameters of dynamic behaviour⁴⁾⁵⁾ ated engines : 100 % Transient speed differ- for naturally aspirin load. The maximum 4-stroke engines : a for turbocharged possible amount of a for turbocharged for engines with and pressure charged a sudden increase decrease of load for naturally aspirated - a sudden 100 % ence caused by : (see figure 2) Recovery time from zero is : 2 AMC engines 5.3.1.2 5.3.2.1 5.3.2.2 5.3.1.1 5.3.2 5.3.1 5.3

TABLE 3 - Parameters of governing systems (continued)

4), 5) : see page 4.

TABLE 3 — Parameters of governing systems (concluded)

4

-	2	8	* _{ht}	2	9	7	8	6	10
5.4	Governing system factors for parallel operation		ps://sta	iT				-	
5.4.1	Rate of change of engine speed setting	Rate of change of speed setting under remote control, expressed as a percentage of the declared speed per second	andards.i	eh S		0,2–1	0,21	AMC	AMC
5.4.2	Load sharing at speed droop $\delta_{st} \ge 3 \%$ within relative load	The difference between the proportion of load taken by an individual engine and the pronortion of the total load	teh.ai/c	2Per ×100		≈ 10	≤ 12,5	-	
	range 20 to 100 % ⁶)	carried by all engines, expressed as a percentage	nd <u>ISC</u> atalog/	lividual engine load					
		88.07	aro aro 304 stand	al load (power)	••••				
		<u>so-30</u>	رون کو کو کو کو اور کو کو کو کو کو کو کو کو کو کو کو کو کو کو ک	gine declared power al declared power				· · · · · · · · · · · · · · · · · · ·	
5.4.3	Power variation band	Width of the envelope of variation of the actual engine power under steady state	ite 978 ist/f04) P		AMC	AMC		
		conditions, expressed as a percentage of the declared power of the engine	h.a	PRI		· .		-	
 The valu should be su values should 	tes of Class A ₀ , which are ir ubject to agreement betwee 1 conform to the next lower	mportant in the context of a particular application an the manufacturer and the customer. Remaining class.	4) the dover the and a the the a the a the the a the a the a the the a the a the a the a the the a the a the a the a the a the the a the a the a the a the a the a the a the the a the a the the a the a	alues of the parame ruing equipment. T ffective pressure, it	eters of hey are ts dead 1	dynamic beh also influenc time, its spee	aviour are no ed by factors ed, the type o	t only deterr such as the ty f pressure cha	nined by the pe of engine rging system
2) AMC rep	presents "by agreement betw	veen Manufacturer and Customer".	fitted, the (engine and	setting of the fuel 4 its driven machine	stop adj 'ry).	ustment and	the moment		
3) When en	igines conforming to group or a service speed lower tha	1 (see ISO 3046/II) are fitted with simple governors an the maximum desion speed without mechanica	5) For the torque dem	e purpose of this In nanded from the enç	ternation gine by it	nal Standard, ts driven mac	the load is tal hinery.	ken to be the I	ower and/o
changes in the approximatel	the governor components, the lay inverse proportion to the	the droop for Classes B_1 and B_2 shall be greater in service speed.	6) At spei facturer an	ed droop of less the dthe customer.	han 3 %	the load sh	aring shall be	agreed betwe	in the manu

ISO 3046/IV-1978 (E)

6 AGREEMENT AS TO REQUIREMENTS BETWEEN MANUFACTURER AND CUSTOMER

Whenever the customer is unable to select his requirements from the manufacturer's standard classes of governors, he should inform the manufacturer of the class of governing required and also the requirements of the auxiliary devices on the governor. Should some governing parameters required by the customer exceed those given in table 3, their values shall be subject to agreement between manufacturer and customer in accordance with table 3, class A_n .

7 TESTING OF GOVERNING SYSTEMS

The governing system shall be tested either during the acceptance test or, if necessary, during the operating test of the engine coupled to its contract driven machinery. The parameters to be checked and recorded shall be selected from table 3 by agreement between the manufacturer and the customer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3046-4:1978

https://standards.iteh.ai/catalog/standards/sist/f0482220-8af8-45d0-b19e-3d82b96388ff/iso-3046-4-1978

P_e (bmep at declared power and standard reference conditions), kPa

FIGURE 2 – Maximum possible sudden load increase, from zero, of turbocharged 4-stroke engines as a function of the brake mean effective pressure, $p_{\rm e}$, at declared power

NOTE – The curve has been established from tests on a number of engines considered to be generally representative and shall be used in the absence of any other specific information. The further step or steps of an additional load increase shall be specified by the manufacturer.

