ISO/FDIS 4080:2023(E) Date:2024-01-31 ISO/TC 45/<del>SC1/WG</del>4<u>SC 1</u> Secretariat: DIN Date: 2024-03-04 # Rubber and plastics hoses and tubing, and their assemblies — Determination of permeability to gas <u>Tuyaux et flexibles en caoutchouc et en plastique — Détermination de la perméabilité au gaz</u> # iTeh Standards FDIS stage **ISO/FDIS 4080** https://standards.iteh.ai/catalog/standards/iso/dc24b48d-4be9-4c88-a98d-9b685fd1e78c/iso-fdis-4080 # ISO/<del>DIS-FDIS</del> 4080:<del>2023(E2024(en)</del> # © ISO <del>2023</del>2024 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: + 41 22 749 01 11 Fax: +41 22 749 09 47 Email E-mail: copyright@iso.org Website: www.iso.org Published in Switzerland # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/FDIS 4080 https://standards.iteh.ai/catalog/standards/iso/dc24b48d-4be9-4c88-a98d-9b685fd1e78c/iso-fdis-4080 © ISO 2023 - All rights reserved # **Contents** | Forev | vord | iv | |--------|----------------------------------------------------------------------------|-----------------| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Test pieces | 2 | | 4.1 | Method 1 | 2 | | 4.2 | Method 2 | 2 | | 4.3 | Method 3 | 2 | | 5 | Apparatus | 2 | | 6 | Test conditions | 3 | | 6.1 | Test pieces | 3 | | 6.2 | Test temperature | 3 | | 6.3 | Test gas | 3 | | 6.4 | Test pressure | 3 | | 7 | Procedure | | | 7.1 | General ITCh Standards | 3 | | 7.2 | Method 1 | | | 7.3 | Method 2Method 2 | | | 7.4 | Method 3 | | | 8 | Expression of results | | | 9 | Test report ISO/FDIS 4080 | 10 | | Anne | x A (informative) Guidance on permeabilityability | fd1s-4080<br>11 | | A.1 | Permeability passage | 11 | | A.2 | Relationship between permeability passage and the mechanism of the methods | 12 | | A.2.1 | Method 1 | 12 | | A.2.2 | Method 2 | 12 | | A.2.3 | Method 3 | 12 | | Anne | x B (informative) Guidance on test methods and their application | 13 | | Anne | x C (informative) Saturated vapour pressure | 15 | | Biblic | ography | 16 | © ISO 2024 - All rights reserved # ISO/<del>DIS-FDIS</del> 4080:<del>2023(E2024(en)</del> ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>). Attention is drawn ISO draws attention to the possibility that some of the elements implementation of this document may be involve the subjectuse of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see ). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>. This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Rubber and plastics hoses and hose assemblies*. 24648, 4689-4688-4986-9685 [d1e78e/iso-fclis-4080] This fifth edition cancels and replaces the fourth edition, (ISO 4080:2009), which has been technically revised. The main changes compared to the previous edition are as follows: - revised gas permeability test as a whole; - standard title has been changed towards the previous 4th version; - term 3.1terms 3.1 and 3.23.2 added. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>. © ISO 2023 - All rights reserved i₩ # Rubber and plastics hoses and tubing, and their assemblies — Determination of permeability to gas WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices. # 1 Scope This document specifies three methods to determine the permeability to gas by measuring <u>the</u> volume of gas diffusing through a rubber or plastics hose or length of tubing used for gas applications in a specified time. - Method 1: For is for determining the permeability of the complete hose wall or length of tubing wall, excluding end fittings, to the test gas. - Method 2: For is for determining the permeability at the hose and fitting interface, to the test gas. - Method 3: For is for precisely determining the permeability of the complete hose or length of tubing including end fittings. # 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 8330, Rubber and plastics hoses and hose assemblies — Vocabulary ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods ### 3 Terms and definitions For the purpose of this document, the terms and definitions given in ISO 8330 and the following apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ——ISO Online browsing platform: available at <a href="https://www.iso.org/obp">https://www.iso.org/obp</a> - IEC Electropedia: available at <a href="https://www.electropedia.org/">https://www.electropedia.org/</a> #### 3.1 ## end fitting device attached to the end of a hose or tubing to facilitate connection to equipment constituting hose assembly Note 1 to entry: End fitting can include an attached matching part to facilitate the test, if necessary. ## 3.2 # permeability property of a material of transmitting gases and liquids by passage through one surface and out at another surface by diffusion and sorption processes Note 1 to entry: Not to confuse with ""porosity."". Note 2 to entry: The property of a permeability involves the diffusion of molecules, called the permeant, through a membrane or interface. The permeability property works through diffusion to low concentration across the interface. Note 3 to entry: In a pressurized hose the permeant can pass from the inside of the hose to the outside through the hose lining and cover. [sourceSOURCE: ISO 8330:2022, 3.8.5] # 4 Test pieces # **4.1** Method 1 The test piece shall be a length of hose or tubing fitted with end fittings long enough to ensure that the length of the exposed hose or tubing under the gas-collecting trough is $1 \text{ m} \pm 0.01 \text{ m}$ . The test piece shall be a pricked cover or a textile braid cover. # 4.2 Method 2 The test piece shall be a length of hose fitted with end fittings. It shall have a length of 1 m $\pm$ 0,01 m between the end fittings. The test piece shall be a textile reinforced hose with an unpricked cover. NOTE The type of coupling used and the method by which the fittings are fixed to the test piece can affect the permeability results obtained using this method. # **4.3** Method 3 The test piece shall be a length of hose or tubing fitted with end fittings. It shall have a minimum test length of 0,5 m with $\pm \pm 1$ % tolerance between the end fittings. A test length of 1 m $\pm$ 0,01 m between the end fittings may be used when comparison of test result among the three methods are necessary. NOTE The type of end fittings used and the method by which the end fittings are fixed to the test piece can affect the permeability results obtained using this method. # 5 Apparatus **5.1** Schematic layouts of the test arrangements for the three test methods are shown in <u>Figure 1 Figure 1</u> to <u>Figure 3 Figure 3.</u> **5.21 Gas supply,** provided with a suitable pressure regulator gauge and emergency excess flow shutoff valves in case of test piece failure. **5.32** Calibrated pressure gauge or pressure transducer with digital readout, chosen for each test so that the test pressure is between 15 % and 85 % of the full-scale reading. © ISO 2023 - All rights reserved 2 **5.43 Water bath,** capable of being maintained at a specified temperature and of sufficient length to accommodate the test piece. **5.54 Gas-collecting apparatus,** comprising measuring cylinders and in some instances additional apparatus appropriate to each of the three methods, as illustrated in <u>Figure 1</u> (collecting trough), <u>Figure 2</u> (collecting funnels) and <u>Figure 3</u> (collecting funnel and transparent glass tube), respectively. The capacity and accuracy of the measuring cylinders shall be selected in accordance with the volume of gas that is expected to be collected. A transparent glass tube may be replaced with a tube made from acrylic, polycarbonate and similar materials, or with a transparent collecting trough large enough to cover the whole test piece to collect escaped gas. **5.65 Barometer,** to record the barometric pressure during the test. 5.76 Two thermometers, to record the water temperature and air temperature at the gas-collection point(s). # 6 Test conditions # 6.1 Test pieces No test shall be carried out within 24 h of manufacture on rubber or plastics hoses or lengths of tubing. Before testing, the test pieces shall be conditioned in accordance with ISO 23529 for at least 3 h at the specified temperature and humidity. Conditioning of test pieces is excluded for routine testing or maintenance inspection. # 6.2 Test temperature Unless otherwise specified in the product standard, the test shall be carried out at a temperature of 23 °C $\pm$ 2 °C for ambient and water bath. If there is an agreement between the interested parties, the test may be carried out at any temperature. # 6.3 Test gas The test shall be carried out using the test gas specified in the product standard. If there is an agreement between the interested parties, other test gases may be used. Water-soluble gas cannot be quantified. ### 6.4 Test pressure Unless otherwise specified in the product standard, the test shall be carried out at a gas pressure of 1 MPa. If there is an agreement between the interested parties, the test may be carried out at other test pressures. # 7 Procedure #### 7.1 General Guidance on permeability is provided in Annex A, Figure A.1. Annex A, Figure A.1. © ISO 2024 - All rights reserved Guidance on test methods and their application is provided in Annex B, Table B.1. Annex B, Table B.1. The instructions in this subclause are common to all three test methods and shall be followed before methodspecific procedures. Use one test piece for each method. Measure the inside diameter of the test piece if the result is expressed in an amount per surface area. Connect one end of the test piece to the specified gas supply (5.1(5.2)) with a suitable connector. Purge the test piece with test gas for 30 s to expel the air and then seal the test piece by blanking off the other end. Adjust the temperature of the water bath (5.3(5.4)) to the specified value. Before conducting the permeability test, the test piece shall be immersed in water and checked for any leakage. If the permeability is required to be determined at different pressures, test at the lowest pressure first and then at increasing pressure levels. In order to keep of bubbles of the collected gas from sticking to the surface of the collecting devices they, these should be washed with a surface active agent or the like before starting the test. # **7.2** Method **1** Immerse the test piece in the water bath and place the collecting trough so that it is inclined at approximately 20° to the horizontal (see <u>Figure 1Figure 1).</u>). The size of the collecting trough should be sufficient to collect all the gas bubbles over the 1 m length of the test piece. Position the measuring cylinder as shown in <u>Figure 1</u> to collect and measure any gas which diffuses through the entire hose or length of tubing. Apply the specified gas pressure to the test piece and maintain it for at least 24 h. Following this period, depending on the period to reach steady\_state, collect the gas for 6 h or record the time to collect between 450 cm<sup>3</sup> and 500 cm<sup>3</sup> of gas per metre. If the volume of gas collected after 6 h is less than 3,0 cm<sup>3</sup>/m, measure the volume of gas collected in a 24 h period. If the volume of gas collected after 24 h is more than 1,0 cm<sup>3</sup>, then this can be taken as the reading. Repeat the measurement until two successive gas volume readings are within 5 % of each other. Use the average of these two successive readings to calculate the permeability. © ISO 2023 - All rights reserved # Key - 1 gas supply - 2 collecting trough - 3 measuring cylinder - a 1 m $\pm \pm 0,01$ m - 4 test lengtha - 5 test piece - 6 water bath Figure 1 — Schematic apparatus for method 1 # Method 4 # 7.47.3 Method 2 Maintaining the test piece at the specified test temperature outside of the water bath, apply the specified gas pressure to the test piece and maintain it for at least 24 h. Following this period, depending on the period to © ISO 2024 - All rights reserved reach steady\_state, immerse the test piece in the water bath (5.3(5.4)) at the specified temperature (see Figure 2Figure 2). Position the two measuring cylinders and the collection funnels as shown in Figure 2 Figure 2 to collect and measure any gas which escapes from the two ends of the test piece for a period of 1 h. Record the total volume of gas collected as the first reading. Then remove the test piece from the water bath and hold it at the specified temperature and gas pressure for 24 h. After 24 h, re-immersereimmerse the test piece in the water bath and collect and measure the gas as previously. Repeat the measurement until two successive gas volume readings are within 5 % of each other. Use the average of these two successive readings to calculate the permeability. NOTE It is important to remove the test piece from the water bath after each 1 h period and <u>to</u> not leave it immersed since the exposed textile reinforcement can swell and lead to unrepresentative results. # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/FDIS 4080 https://standards.iteh.ai/catalog/standards/iso/dc24b48d-4be9-4c88-a98d-9b685fd1e78c/iso-fdis-4080 © ISO 2023 - All rights reserved 6