NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

Please contact ASTM International (www.astm.org) for the latest information.

de[-l Designation: E 1460 — 92
<’

INTERNATIONAL

Standard Specification for

An American National Standard

Defining and Sharing Modular Health Knowledge Bases
(Arden Syntax for Medical Logic Modules)’

This standard is issued under the fixed designation E 1460; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (¢) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers the sharing of computerized
health knowledge bases among personnel, information sys-
tems, and institutions. The scope has been limited to those
knowledge bases that can be represented as a set of discrete
modules. Each module, referred to as a Medical Logic Module
(MLM), contains sufficient knowledge to make a single deci-
sion. Contraindication alerts, management suggestions, data
interpretations, treatment protocols, and diagnosis scores are
examples of the health knowledge that can be represented
using MLMs. Each MLM also contains management informa-
tion to help maintain a knowledge base of MLMs and links to
other sources of knowledge. Health personnel can create
MLMs directly using this format, and the resulting MLMs can
be used directly by an information system that conforms to this

specification.
1.2 The major topics are found in the following sections.
Section
MLM Format 5
File Format 5.1
Character Set 5.2
Line Break 5.3
White Space 5.4
General Layout 5.5
Categories 5.6
Slots 5.7
Slot Body Types 5.8
Textual Slots 5.8.1
Textual List Slots 5.8.2
Coded Slots 5.8.3
Structured Slots 5.8.4
MLM Termination 5.9
Case Insensitivity 5.10
Slot Descriptions 6
Maintenance Category 6.2
Title 6.2.1
Filename 6.2.2
Version 6.2.3
Institution 6.2.4
Author 6.2.5
Specialist 6.2.6
Date 6.2.7
Validation 6.2.8

! This specification is under the jurisdiction of ASTM Committee E-31 on
Healthcare Informatics and is the direct responsibility of Subcommittee E31.15 on
Medical Knowledge Representation.

Current edition approved Feb. 15, 1992. Published April 1992.

Library Category
Purpose
Explanation
Keywords
Citations
Links

Knowledge Category
Type
Data
Priority
Evoke
Logic
Action
Urgency

Structured Slot Syntax

Tokens
Reserved Words
Identifiers
Special Symbols
Number Constants
Time Constants
String Constants
Team Constants
Mapping Clauses
Comments
White Space

Organization
Statements
Expressions
Variables

Data Types

Null

Boolean
Number

Time

Duration
String

Term

List

Query Results

Operator Descriptions

General Properties
Number of Arguments
Data Type Constraints
List Handling
Primary Time Handling
Operator Precedence
Associativity
Parentheses
List Operators
Where Operator
Logical Operators
Simple Comparison Operators
Is Comparison Operators
Occur Comparison Operators
String Operator
Arithmetic Operators

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

6.4.7

7.1.10

http://www.astm.org/COMMIT/COMMITTEE/E31.htm
http://www.astm.org/COMMIT/SUBCOMMIT/E3115.htm
https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

Please contact ASTM Internatio

i’
Temporal Operators 9.10
Duration Operators 9.11
Aggregation Operators 9.12
Query Aggregation Operators 9.13
Transformation Operators 9.14
Query Transformation Operator 9.15
Numeric Function Operators 9.16
Time Function Operator 9.17
Logic Slot 10
Purpose 10.1
Logic Slot Statements 10.2
Assignment Statement 10.2.1
If-then Statement 10.2.2
Conclude Statement 10.2.3
Call Statement 10.2.4
Logic Slot Usage 10.3
Data Slot 1
Purpose 1.1
Data Slot Statements 1.2
Read Statement 11.2.1
Event Statement 11.2.2
MLM Statement 11.2.3
Argument Statement 1.2.4
Message Statement 11.25
Destination Statement 11.2.6
Assignment Statement 1.27
If-then Statement 11.2.8
Call Statement 11.2.9
Data Slot Usage 1.3
Action Slot 12
Purpose 121
Action Slot Statements 12.2
Write Statement 12.2.1
Return Statement 12.2.2
If-then Statement 12.2.3
Call Statement 12.2.4
Action Slot Usage 12.3
Evoke Slot 13
Purpose 13.1
Events 13.2
Evoke Slot Statements 13.3
Simple Trigger Statement 13.3.1
Where Trigger Statement 13.3.2
Delayed Trigger Statement 13.3.3
Periodic Trigger Statement 13.3.4
Evoke Slot Usage 134

2. Referenced Documents

2.1 ASTM Standards:

E 1238 Specification for Transferring Clinical Laboratory
Data Messages Between Independent Computer Systems?

E 1384 Guide for Content and Structure of the Computer-
Based Patient Record®

2.2 ISO Standards:

ISO 8601 — 1988 Data Elements and Interchange
Formats—Information Interchange (representation of
dates and times)?

2.3 ANSI Standards:

ANSI X3.4 — 1986 Coded Character Sets—American Na-
tional Standard Code for Information Interchange (7-bit
ASCID*

3. Terminology
3.1 Definitions:

2 Annual Book of ASTM Standards, Vol 14.01.

3 Available from ISO, 1 Rue de Varembe, Case Postale 56, CH 1211, Geneve,
Switzerland.

4 Available from American National Standards Institute, 11 W. 42nd St., 13th
Floor, New York, NY 10036.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

| (www.astm.org) for the latest information.
E 1460 — 92

3.1.1 Medical Logic Module (MLM), , n—an independent
unit in a health knowledge base. Each MLM contains mainte-
nance information, links to other sources of knowledge, and
enough logic to make a single health decision.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 time, , n—a point in absolute time. Also known as a
timestamp, it includes both a date and a time-of-day.

3.2.2 time-of-day, , n—hours, minutes, seconds, and possi-
bly, fractions of seconds past midnight.

3.2.3 date, , n—Gregorian year, month, and day.

3.2.4 duration, , n—a period of time (for example, 3 days)
that has no particular start or end point.

3.2.5 institution, , n—a health facility of any size that will
provide automated decision support or quality assurance.

4. Significance and Use

4.1 Decision support systems have been used for health care
successfully for many years, and several institutions have
already assembled large knowledge bases. There are many
conceptual similarities among these knowledge bases. Unfor-
tunately, the syntax of each knowledge base is different. Since
no one institution will ever define a complete health knowledge
base, it will be necessary to share knowledge bases among
institutions.

4.2 Many obstacles to sharing have been identified: dispar-
ate vocabularies, maintenance issues, regional differences,
liability, royalties, syntactic differences, etc. This standard
addresses one obstacle by defining a syntax for creating and
sharing knowledge bases. In addition, the syntax facilitates
addressing other obstacles by providing specific fields to enter
maintenance information, assignment of clinical responsibility,
links to the literature, and mappings between local vocabulary
terms and terms in the knowledge base.

4.3 The range of health knowledge bases is large. This
specification focuses on those knowledge bases that can be
represented as a set of Medical Logic Modules (MLMs). Each
MLM contains maintenance information, links to other sources
of knowledge, and enough logic to make a single health
decision. Knowledge bases that are composed of independent
rules, formulae, or protocols are most amenable to being
represented using MLMs.

4.4 This specification, which is an outcome of the
Columbia-Presbyterian Medical Center 1989 Arden Home-
stead retreat on sharing health knowledge bases, is derived
largely from HELP of LBF Hospital, Salt Lake City, UT (1),
and CARE, the language of the Regenstrief Medical Record
System of the Regenstrief Institute for Health Care, Indianapo-
lis, IN (2).

5. MLM Format

5.1 File Format—An MLM is a stream of text stored in an
ASCII file (ANSI X3.4 — 1986). One or more MLMs may be
placed in the same file. Within a file, an MLM begins with the
marker maintenance: and ends with the marker end:.

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.

http://dx.doi.org/10.1520/E1238
http://dx.doi.org/10.1520/E1238
http://dx.doi.org/10.1520/E1384
http://dx.doi.org/10.1520/E1384
https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
E 1460 — 92
i’

5.2 Character Set—Within an MLM only the printable
ASCII characters (ASCII 33 through and including 126), space
(ASCII 32), carriage return (ASCII 13), line feed (ASCII 10),
and horizontal tab (ASCIH 9) may be used. The use of
horizontal tab is discouraged because there is no agreement on
how many spaces it represents. Other characters, like the bell
and backspace, are not allowed within the MLM. (There is no
limitation on the characters that may occur between MLMs
within a file; for example, a form feed character may separate
two MLMs even though it cannot occur within an MLM.)

5.3 Line Break—Lines are delimited by line breaks, which
are any one of the following: a single carriage return, a single
line feed, or a carriage return-line feed pair.

5.4 White Space—The space, carriage return, line feed, and
horizontal tab are collectively referred to as white space.

5.5 General Layout—Annex Al contains a complete de-
scription of MLMs expressed in BACKUS-NAUR Form. See
Appendix X1 for MLM examples. (Planned editions and
changes for future versions of this specification are listed in
Appendix X2.) A typical MLM is arranged like this.
maintenance:

slotname: slot-body;;
slotname: slot-body;;

library:
slotname: slot-body;;

knowledge:
slotname: slot-body;;
end:

5.6 Categories—An MLM is composed of slots grouped
into three categories: maintenance, library, and knowledge. A
category is indicated by a category name followed immediately
by a colon (that is, maintenance:, library:, and knowledge:).
Category names need not be placed at the beginning of a line.

5.7 Slots—Within each category is a set of slots.

5.7.1 Each slot consists of a slot name, followed immedi-
ately by a colon (for example, title:), then followed by the slot
body, and terminated with two adjacent semicolons (;3) which
is referred to as double semicolon. The content of the slot body
depends upon the slot, but it must not contain a double
semicolon.

5.7.2 Each slot must be unique in the MLM, and categories
and slots must follow the order in which they are listed in this
standard. Some slots are required and others are optional.

5.8 Slot Body Types—These are the basic types of slot
bodies:

5.8.1 Textual Slots—The textual slots contain arbitrary text
(except for double semicolon, which ends the slot). As the
MLM standard is augmented, slots that are currently consid-
ered to be textual may become coded or structured. An
example of a textual slot is the title slot, which can contain
arbitrary text.

5.8.2 Textual List Slots—Some slots contain textual lists.
These are lists of arbitrary textual phrases separated by single
semicolons (3). An example of a textual list slot is the keywords
slot.

5.8.3 Coded Slots—Coded slots contain a simple coded
entry like a number, a date, or a term from a predefined list. For
example, the priority slot can only contain a number, and the
validation slot can contain only the terms production, re-
search, etc.

5.8.4 Structured Slots—Structured slots contain syntacti-
cally defined slot bodies. They are more complex than coded
slots, and are further defined in Section 7. An example of this
kind of slot is the logic slot.

5.9 MLM Termination—The end of the MLM is marked by
the word end followed immediately by a colon (that is, end:).

5.10 Case Insensitivity—Category names, slot names, and
the end terminator may be typed in uppercase (for example,
END), lowercase (for example, end), or mixed case (for
example, eNd).

6. Slot Descriptions

6.1 For each slot description, next to the slot name is an
indication of whether the slot is textual, textual list, coded, or
structured, and whether it is required or optional. Slots must
appear in this order.

6.2 Maintenance Category—The maintenance category
contains the slots that specify information unrelated to the
health knowledge in the MLM. These slots are used for MLM
knowledge base maintenance and change control.

6.2.1 Title (textual, required)—The title serves as a com-
ment that describes briefly what the MLM does. For example,
title: Hepatitis B Surface Antigen in Pregnant Women;;

6.2.2 Filename (coded, required)—The MLM filename
uniquely identifies an MLM within a single authoring institu-
tion. It is represented as a string of characters beginning with
a letter and followed by letters, digits, and underscores (_). A
filename may be 1 to 80 characters in length. Filenames are
insensitive to case. The MLM filename is distinct from the
name of the ASCII file which happens to hold one or more
MLMs. For example,

filename: hepatitis_B_in_pregnancy;;

6.2.3 Version (coded, required)—The current version of the
MLM is expressed as a fixed point number with two decimal
places to the right of the decimal point. MLMs start at 1.00 and
advance by .01 for small revisions and by 1 for large revisions.
For example,

version: 1.00;;

6.2.4 Institution (textual, required)—The institution slot
contains the name of the authoring institution. For example,

institution: Columbia University;;

6.2.5 Author (textual list, required):

6.2.5.1 The author slot contains a list of the authors of the
MLM, delimited by semicolons. The following format should
be used: first name, middle name or initial, last name, comma,
suffixes, and degrees.

6.2.5.2 An electronic mail address enclosed in parentheses
may optionally follow each author’s name. Internet addresses
are assumed. Bitnet addresses should end in .bitnet and UUCP
addresses should end in .uucp. For example,
author: John M. Smith, Jr., M.D. (jms@cuasdf.bitnet);;

6.2.6 Specialist (textual, required)—The domain specialist
is the person in the institution responsible for validating and
installing the MLM. This slot should always be present but

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

E 1460 — 92

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

blank when transferring MLMs from one institution to another.
It is the borrowing institution’s responsibility to fill this slot
and accept responsibility for the use of the MLM. The format
is the same as for the author slot.

6.2.7 Date (coded, required)—The date of last revision of
the MLM must be placed in this slot. Either a date or a time
(that is, a point in absolute time composed of a date plus a
time-of-day) can be used. The format is ISO extended format
for dates and for date-time combinations with optional time
zones (ISO 8601:1988 (E)). Dates are yyyy-mm-dd so that
January 1, 1989 would be represented as 1989-01-01. Times
are yyyy-mm-ddThh:mm:ss with optional fractional seconds
and optional time zones. Thus, 1:30 pm on January 1, 1989
would be represented as 1989-01-01T13:30:00. For example,

date: 1989-01-01;;

6.2.8 Validation (coded, required):

6.2.8.1 The validation slot specifies the validation status of
the MLM. Use one of the following terms:

(a) production—approved for use in the clinical system,
(b) research—approved for use in a research study,
(c) testing—for debugging, default initial value, or
(d) expired—out of date, no longer in clinical use.
6.2.8.2 An example is:
validation: testing;;

6.2.8.3 —MLMs should never be shared with a validation
status of production, since the domain specialist for the
borrowing institution must set that validation status.

6.3 Library Category—The library category contains the
slots pertinent to knowledge base maintenance that are related
to the MLM’s knowledge. These slots provide health personnel
with predefined explanatory information and links to the health
literature. They also facilitate searching through a knowledge
base of MLMs.

6.3.1 Purpose (textual, required)—The purpose slot de-
scribes briefly why the MLM is being used. For example,
purpose: Screen for newborns who are at risk for develop-

ing hepatitis B;;

6.3.2 Explanation (textual, required)—The slot explains
briefly in plain English how the MLM works. The explanation
is shown to the health care provider when he or she asks why
an MLM came to its decision. For example,
explanation: This woman has a positive hepatitis B
surface antigen titer within the past year. Therefore

her newborn is at risk for developing hepatitis B.;;

6.3.3 Keywords (textual list, required)—Keywords are de-
scriptive words used for searching through modules. UMLS
terms (3) are preferred but not mandatory. Terms are delimited
by semicolons (commas are allowed within a keyword). For
example,

keywords: hepatitis B; pregnancy;;

6.3.4 Citations (textual, optional)—Citations to the litera-
ture are entered in Vancouver style (4). Citations may be
numbered, serving as specific references. For example,
citations:

1. Steiner RW. Interpreting the fractional excretion of
sodium. Am J Med 1984;77:699-702.

2. Goldman L, Cook EF, Brand DA, Lee TH, Rouan GW,
Weisberg MC, et al. A computer protocol to predict myo-

cardial infarction in emergency department patients with
chest pain. N Engl J Med 1988;318(13):797-803.

6.3.5 Links (textual, optional)—The links slot allows an
institution to define links to other sources of information, such
as an electronic textbook, teaching cases, or educational
modules. The contents of this slot are institution-specific.

6.4 Knowledge Category—The knowledge category con-
tains the slots that actually specify what the MLM does. These
slots define the terms used in the MLM (data slot), the context
in which the MLM should be evoked (evoke slot), the health
condition to be tested (logic slot), and the action to take should
the condition be true (action slot).

6.4.1 Type (coded, required)—The type slot specifies what
slots are contained in the knowledge category. The only type
that has been defined so far is data-driven, which implies that
there are the following slots: data, priority, evoke, logic, action,
and urgency. That is,

type: data-driven;;

6.4.2 Data (structured, required)—In the data slot, terms
used locally in the MLM are mapped to entities within an
institution. The actual phrasing of the mapping will depend
upon the institution. The details of this slot are explained in
Section 11.

6.4.3 Priority (coded, optional)—The priority is a number
from 1 (low) to 99 (high) that specifies the relative order in
which MLMs should be evoked should several of them
simultaneously satisfy their evoke criteria. An institution may
or may not choose to use a priority. The institution is
responsible to maintain these numbers to avoid conflicts. A
borrowing institution will need to adjust these numbers to suit
its collection of MLMs. For example,

priority: 50;;

6.4.4 Evoke (structured, required)—The evoke slot contains
the conditions under which the MLM becomes active. The
details of this slot are explained in Section 13.

6.4.5 Logic (structured, required)—This slot contains the
actual logic of the MLM. It generally tests some condition and
then concludes true or false. The details of this slot are
explained in Section 12.

6.4.6 Action (structured, required)—This slot contains the
action produced when the logic slot concludes true. The details
of this slot are explained in Section 9.17.1.

6.4.7 Urgency (coded, optional)—The urgency of the action
or message is represented as a number from 1 (low) to 99
(high). Whereas the priority determines the order of execution
of MLMs as they are evoked, the urgency determines the
importance of the action of the MLM only if the MLM
concludes true (that is, only if the MLM decides to carry out its
action). For example,

urgency: 50;;

7. Structured Slot Syntax

7.1 Tokens—The structured slots consist of a stream of
character strings known as syntactic elements or tokens. These
tokens can be classified as follows:

7.1.1 Reserved Words—Reserved words are predefined to-
kens made of letters and digits. They are used to construct

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

E 1460 — 92

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

statements, to represent operators, and to represent data con-
stants. Some are not currently used, but are reserved for future
use. The predefined synonyms of operators as well as the
operators themselves are considered synonyms.

7.1.1.1 The existing reserved words are listed in Annex A2.

7.1.1.2 The—The is a special reserved word which is
ignored wherever it is found in a structured slot. Its purpose is
to improve the readability of the structured slots by permitting
statements to be more like English.

7.1.1.3 Case Insensitivity—The syntax is insensitive to the
case of reserved words. That is, reserved words may be typed
in uppercase, lowercase, and mixed case. For example, then
and THEN are the same word.

7.1.2 Identifiers—Identifiers are alphanumeric tokens. The
first character of an identifier must be a letter, and the rest must
be letters, digits, and underscores (_). Identifiers must be 1 to
80 characters in length. Reserved words are not considered
identifiers; for example, then is a reserved word, not an
identifier. Identifiers are used to represent variables which hold
data.

7.1.2.1 Case Insensitivity—The syntax is insensitive to the
case of identifiers. That is, identifiers may be typed
in uppercase, lowercase, and mixed case. For example, dis-
charge_status and Discharge_Status are the same identifier.

7.1.3 Special Symbols—The special symbols are predefined
non-alphanumeric tokens. Special symbols are used for punc-
tuation and to represent operators. They are listed in Annex A3.

7.1.4 Number Constants—Constant numbers contain one or
more digits (0 to 9) and an optional decimal point (.). (In
Specification E 1238E 1238, .1 and 345. are valid numbers.) A
number constant may end with an exponent, represented by an
E or e, followed by an optional sign and one or more digits.
These are valid numbers:

0

345

0.1
34.5E34
0.1e-4

7.1.4.1 Negative Numbers—Negative numbers are created
using the unary minus operator (—, see 9.9.4). The minus sign
is not strictly a part of the number constant.

7.1.5 Time Constants—Time constants use the ISO ex-
tended format (with the t separator) for date-time combina-
tions with optional fractional seconds (using . format) and with
optional time zones (ISO 8601:1988 (E)). The basic format is:
yyyy-mm-ddThh:mm:ss. Thus, 1:30 pm on January 1, 1989
would be represented as 1989-01-01T13:30:00.

7.1.5.1 Fractional Seconds—Fractional seconds are repre-
sented by appending a decimal point (.) and one or more digits
(for example, 1989-01-01T13:30:00.123).

7.1.5.2 Time Zones—The local time zone is the default. ISO
Coordinated Universal Time is represented by appending a z to
the end (for example, 1989-01-01T13:30:00.123Z). The local
time zone can be explicitly stated by appending + or — hh:mm
to indicate how many hours and minutes the local time is ahead
or behind UTC. Thus EST time zone would use 1989-01-
01T13:30:00-05:00, which would be equivalent to 1989-01-
01T18:30:00Z.

7.1.6 String Constants—String constants begin and end
with the quotation mark (““, which is ASCII 34). For example,
“this is a string”

7.1.6.1 Internal Quotation Marks—A quotation mark within
a string is represented by using two adjacent quotation marks.
For example,
“this string has one quotation mark:” ” ”
7.1.6.2 Single Line Break—Within a string, white space
containing a single line break (that is, one of the carriage
return-line feed combinations) is converted to a single space.
For example,
“this is a string with
one space between 'with’ and 'one’”’
7.1.6.3 Multiple Line Breaks—Within a string, white space
containing a more than one line break is converted to a single
line break.
“this is a string with

one line break between 'with’ and 'one’”

7.1.6.4 Strings must not contain double semicolon (53).

7.1.7 Term Constants—Term constants begin and end with
an apostrophe (° which is ASCII 39), and they contain a valid
MLM filename. For example,

'mlm_name’

7.1.8 Mapping Clauses—A mapping clause is a string of
characters that begins with { and ends with }. The only
requirement imposed on what is within the curly brackets is
that unquoted curly brackets must match (that is, a compiler
needs to be able to figure out where the enclosed portion ends),
and they must not contain double semicolon (3;). Mapping
clauses are used in the data slot to signify institution-specific
definitions like database queries.

7.1.9 Comments—A comment is a string of characters that
begins with /* and ends with */. They must not contain double
semicolon (33). Comments are used to document how the slot
works, but they are ignored logically (like the).

7.1.10 White Space—Any string of spaces, carriage returns,
line feeds, and horizontal tabs is known as white space. White
space is used to separate other syntactic elements and to format
the slot for easier reading. White space is required between any
two tokens that may begin or end with letters, digits, or
underscores (for example, if done). They are also required
between two string constants. They are optional between other
tokens (for example, 3 + 4 versus 3 + 4).

7.2 Organization—The tokens are organized into the fol-
lowing constructs:

7.2.1 Statements—A structured slot is composed of a set of
statements. Each statement specifies a logical constraint or an
action to be performed. In general, statements are carried out
sequentially in the order that they appear. These are examples
of statements (each is preceded by a comment that tells what it
does):

/* this assigns 0 to variable “varl” */
let varl be 0;
/* this causes the MLM named ‘“hyperkalemia” to be
executed */
call’ hyperkalemia’;
/* this concludes‘ true” if the potassium is greater than 5 */

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

E 1460 — 92

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

if potassium >5.0 then
conclude true;
endif;
7.2.1.1 Statement Termination—All statements except the
last statement in a slot must end with a semicolon (;). For the
last statement in a slot, the terminating semicolon is optional;
whether or not it has a semicolon, the last statement will be
followed by a double semicolon (3;) marking the end of the
slot. For example, the logic slot could contain:
logic:
last_potas : = last potas_list;
if last_potas > 5.0 then
conclude true;
endif;
55
7.2.1.2 The syntax of the statements depends upon the
individual slot. For a detailed description of the allowable
statement types in each structured slot, see Sections 10, 11, 12,
and 13.

7.2.2 Expressions—Statements are composed of reserved
words, special symbols, and expressions. An expression repre-
sents a data value, which may belong to any one of the types
defined in Section 8. Expressions may contain any of the
following:

7.2.2.1 Constant—The data value may be represented ex-
plicitly using a constant like the number 3, the time 1991-03-
23T00:00:00, etc. See 7.1. These are valid expressions:
null
true
3454
“this is a string”
1991-05-01T23:12:23

7.2.2.2 Variable—An identifier (see 7.1.2) within an expres-
sion signifies a variable (see 7.2.3). These are valid expres-
sions:

varl
this_is_a_variable
a

7.2.2.3 Operator and Arguments—An expression may con-
tain an operator and one or more sub-expressions known as
arguments. For example, in 3 +4, + is an operator and 3 and
4 are arguments. The result of such an expression is a new data
value, which is 7 in this example. Expressions may be nested
so that an expression may be an argument in another expres-
sion. These are valid expressions:

4 * cosine 5
varl =7 and var2 =15
“4+3)*7

7.2.2.4 For details on operators, precedence, associativity,
and parentheses, see 9.1.

7.2.3 Variables—A variable is a temporary holding area for
a data value. Variables are not declared explicitly, but are
declared implicitly when they are first used. A variable is
assigned a data value using an assignment statement (see
10.2.1). When it is later used in an expression, it represents the
value that was assigned to it. For example, varl is a valid

variable name. If the variable is used before it is assigned a
value, then its value is null.

7.2.3.1 Scope—The scope of a variable is the entire MLM,
not an individual slot. MLMs cannot read variables from other
MLMs directly; thus, variables used in an MLM are not
available to MLMs that are called (see 10.2.4).

7.2.3.2 Special Variables—Some variables, like event vari-
ables, MLM variables, message variables, and destination
variables, are special. They can only be used in particular
constructs, and not in general expressions. These variables use
special assignment statments in the data slot as defined in
Section 11 (these special assignment statements are equivalent
to declarations for the special variables).

8. Data Types

8.1 The basic function of an MLM is to retrieve patient data,
manipulate the data, come to some decision, and possibly
perform an action. Data may come from one of several sources:
a direct query to the patient database, a constant in the MLM,
or the result of an operation on other data. The data classified
into several data types.

8.2 Null—Null is a special data type that signifies uncer-
tainty. Such uncertainty may be the result of a lack of
information in the patient database or an explicit null value in
the database. Null results from an error in execution, like a type
mismatch or division by zero. Null may be specified explicitly
within a slot using the word null (that is, the null constant). The
following expressions result in null (each is preceded by a
comment):

/* explicit null */
null

/* division by zero */
3/0

/* addition of Boolean “true” is illegal */
true + 3

8.3 Boolean—The Boolean data type includes the two truth
values: true and false. The word true signifies Boolean true and
the word false signifies Boolean false.

8.3.1 The logical operators use tri-state logic by using null
to signify the third state, uncertainty. For example, true or null
is true because although null is uncertain, a disjunction that
includes true is always true regardless of the other arguments.
But false or null is null because false in a disjunction adds no
information. See 9.4.1 for a full truth table.

8.4 Number—There is a single number type, so there is no
distinction between integer and real numbers. Number con-
stants (for example, 3.4E-12) are defined in 7.1.4.

8.5 Time—The time data type refers to points in absolute
time; it is also referred to as timestamp in other systems. Both
date and time-of-day must be specified. Times back to the year
1800 must be supported. Time constants (for example, 1990-
07-12T00:00:00) are defined in 7.1.5.

8.5.1 Granularity—The granularity of time is always infini-
tesimal (not discrete seconds). Times stored in patient data-
bases will have varying granularities. When a time is read by
the MLM, it is always truncated to the beginning of the granule
interval. For example, if the time-of-day is recorded only to the
minute, then zero seconds are assumed; if only the date is
known, then the time-of-day is assumed to be midnight.

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
E 1460 — 92
i’

8.5.2 Midnight+—Midnight (that is, T00:00:00 in the time-
of-day fields) is the beginning of the day to come (not the end
of day that just ended).

8.5.3 Now—The word now is a time constant that signifies
the time of execution of the MLM. Now is constant through the
execution of the MLM; that is, if now is used more than once,
it will have the exact same value within the same MLM.

8.5.4 Eventtime—One way that MLMs are evoked is by a
triggering event. For example, the storage of a serum potas-
sium in the patient database is an event that might evoke an
MLM. The word eventtime is a time constant that signifies the
time that the evoking event occurred (for example, the time
that the database was updated). The eventtime is useful
because MLMs may be evoked after a time delay; using
eventtime, the MLM can query for what has occurred since the
evoking event.

8.6 Duration—The duration data type signifies an interval
of time that is not anchored to any particular point in absolute
time. There are no duration constants. Instead one builds
durations using the duration operators (see 9.11). For example,
1 day, 45 seconds, and 3 months are durations.

8.6.1 Sub-types—The duration data type has two sub-types:
months and seconds. The reason for the division is that the
number of seconds in a month or in a year depends on the
starting date. Durations of months and years are expressed as
months. Durations of seconds, minutes, hours, days, and weeks
are expressed as seconds. There are no complex durations; the
sub-type must be either months or seconds, but not both.

8.6.2 The printing of a duration (that is, its string version) is
independent of its internal representation. The health care
provider who reads the result of an MLM may not realize that
there are two sub-types of durations. How durations are printed
is location-specific. For example, the string version of 6E + 08
seconds might be 19.01 years. See 9.8.

8.6.3 Time and Duration Arithmetic—QOperations among
times and durations are carried out as follows:

8.6.3.1 Time — Time—The subtraction of two times always
results in a seconds duration. For example, 1990-03-
01T00:00:00 — 1990-02-01T00:00:00 results in 2419200 sec-
onds.

8.6.3.2 Time and Seconds—The addition or subtraction of a
time and a seconds duration results in a time. The arithmetic is
straightforward: the time is expressed as the number of seconds
since some anchor point (for example, 1600-03-01T00:00:00)
and the number of seconds is added to or subtracted from the
time. For example, 1990-02-01T00:00:00 + 2419201 seconds
results in 1990-03-01T00:00:01.

8.6.3.3 Time and Months—The addition or subtraction of a
time and a months duration results in a time. The time is
expressed in date and time-of-day format (for example, 1991-
01-31T00:00:00). Months are then added to or subtracted from
the year and month components of the date (that is, 1991-01 in
the example). If the resulting time is invalid due to the number
of days in the new month, then the days are truncated to the last
valid day of the month. For example, 1991-01-
31T00:00:00 + 1 month results in 1991-02-28T00:00:00. If
the month has a fractional component (for example, 1.1
months) then integer months are used (that is, 1 month and 2

months in the example) and the result is gotten through
interpolation. For example, 1991-01-31T00:00:00 + 1.1
months results in 1991-03-03T02:24:00.

8.6.3.4 Months and Seconds—Operations between months
and seconds are done by first converting the months arguments
to seconds using this conversion constant: 2629746 seconds/
month (the average number of seconds in a month in the
Gregorian calendar). For example, 1 month / 1 second results
in 2629746.

8.7 String—Strings are streams of characters of variable
length. String constants are defined in 7.1.6. For example,
“this is a string constant”

8.8 Term—Terms are currently used only to represent MLM
filenames within a structured slot. They are used only in a call
statement (see 10.2.4). In the future they will be used for
controlled vocabulary terms. Term constants are defined in
7.1.7. For example,

"'mlm_filename2’

8.9 List—A list is an ordered set of elements, each of which
is null, Boolean, number, time, duration, or string. There are no
nested lists; that is, a list cannot be the element of another list.
Lists may be heterogeneous; that is, the elements in a list may
be of different types. There is one list constant, the empty list,
which is signified by using a pair of empty parentheses: ().
Other lists are created by using list operators like , to build lists
from single items (see 9.2). For example, these are valid lists:
4,3,5
3, true, 5, null
,1
0

8.10 Query Results—The result of a database query has a
time value in addition to its data value.

8.10.1 Queries in the data slot retrieve data from the patient
database. The result of a query is assigned to a variable for use
in the other slots. The result may be a single item or a list.

8.10.2 Primary Time, Every item in the patient database is
assumed to have some primary time (also called time of
occurrence) associated with it. This time is defined as the
medically relevant time for that query. For different entities, the
primary time might signify different times. The primary time of
a blood test might be the time it was drawn from the patient (or
the closest to that time), whereas the primary time of a
medication order might be the time the order was placed.

8.10.3 Implicit in every query to the patient database is a
request for the primary time of the data. For example, when
one retrieves a list of serum potassiums, one actually retrieves
a list of pairs. Each pair contains a data value (the serum
potassium) and a time value (when it was drawn).

8.10.4 Retrieval Order—The result of a query is always
sorted in chronological order by the primary time of the result.

8.10.5 Data Value—If a variable has been assigned the
result of a query, then the use of the variable always refers to
the data value. For example, if potas is a variable that has been
assigned a list of serum potassiums, then one could use this
statement to check the value of the most recent potassium
measurement:

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

E 1460 — 92

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

if last potas > 5.0 then
conclude true;
endif;

8.10.6 Time Function Operator—By using the time opera-
tor (see 9.17), one can get to the primary time value. For
example, one could use this statement to check the primary
time of the most recent potassium measurement:
if time of (last potas) is within the past 3 days then

conclude true;
endif;

8.10.7 The eventtime is not necessarily the primary time.
For example, if the storage of a serum potassium evokes an
MLM, then the eventtime is the time that the result was stored
in the database, but the primary time of the result is the time
that it was drawn from the patient.

9. Operator Descriptions

9.1 General Properties—Operators are used in expressions
to manipulate data. They accept one or more arguments (data
values) and they produce a result (a new data value). The
following properties apply to the operator definitions in this
section.

9.1.1 Number of Arguments—QOperators may have one, two,
or three arguments. Some operators have two forms: one with
one argument and one with two arguments. Operators are
described as follows:
unary operator—one argument
binary operator—two arguments
ternary operator—three arguments

9.1.2 Data Type Constraints—Most operators work on only
a subset of all the data types. Every operator description
includes a type constraint that shows the position and allowable
types of all of its arguments. Its general format is like this:

<type> : = <type> op <type>

9.1.2.1 In this constraint, op is the operator being described.

9.1.2.2 <type> is one of the following:
<null>—null data type
<Boolean>—Boolean data type
<number>—number data type
<time>—time data type
<duration>—duration data type
<string>—string data type
<item>—not used in expressions, only in “call” statements
(see 10.2.4)
<list>—treated specially
<any-type>—null, Boolean, number, time, duration, or
string
<non-null>—Boolean, number, time, duration, or string
<ordered>—number, time, duration, or string

9.1.2.3 <type> to the right of the : = indicates the data type
of the arguments. If the operator is applied to an argument with
a type outside of its defined set, then null results. For example,
** is not defined for the time data type so 3%%1991-03-
24T00:00:00 results in null. For most operators, null is not in
the defined set, so null is returned when null is an argument.
For example, null is not defined for + so 3 + null results in
null.

9.1.2.4 <type> to the left of the : = indicates the data type of
the result. Unless stated otherwise, the operators can also return
null regardless of the stated usual result type.

9.1.3 List Handling—Except as otherwise stated, lists are
treated as follows:

9.1.3.1 When a list is the argument to an operator, that
operator is applied to each element in the list one at a time, and
the result of the operation is a list of the same length as the
operator. For example, abs(-3, -4, -5), which returns the
absolute value, results in 3, 4, 5.

9.1.3.2 When an operator has more than one argument and
two or more are lists, then all the lists must have the same
number of elements, and the operation is performed between
corresponding elements in each list. The result is a list of the
same length. If the lists do not have the same number of
elements, then a single null is the result. For example,
3,4,5) + (1,2,2) results in 4, 6, 7 but (1,2) + (3,4,5) results in
null.

9.1.3.3 When an operator has more than one argument and
at least one is a list and at least one is a single item (that is, not
a list) then the operation is performed as follows. The operation
is performed between each element on the list and the single
item, and the result is a list. For example, (3,4,5) + 1 results in
4,5, 6.

9.1.4 Primary Time Handling—The queries attached a pri-
mary time to their result (see 8.10). Some operators maintain
those primary times and others lose them. Except as otherwise
stated, primary times are treated as follows:

9.1.4.1 Unary operators maintain primary times. In this
example, resultl still has primary times attached if datal is the
result of a query:

resultl : = sin(datal);

9.1.4.2 Binary and ternary operators maintain primary times
except if arguments are derived from different queries. This is
necessary because even if the arguments are lists of the same
length, it is not clear whose primary time to attach to the result.
Thus, if datal and data2 are the results of different queries,
then in this example, resultl has no primary times attached:

resultl : = datal + data2;

9.1.5 Operator Precedence—Expressions are nested struc-
tures which may contain more than one operator and several
arguments. The order in which operators are executed is
decided by using an operator property called precedence.
Operators groups into several precedence groups. Operators of
higher precedence are performed before operators of lower
precedence. For example, the expression 3 + 4*5 (three plus
four times five) is executed as follows: since * has higher
precedence than +, it is performed first so that 4*5 results in
20; then + is performed so that 3 + 20 results in 23.

9.1.5.1 Precedence Table—The operators are shown
grouped by precedence in Annex A4.

9.1.6 Associativity—When an expression contains more
than one operator within the same precedence group, the
operators’ associativity property decides the order of execu-
tion. There are three types of associativity:

9.1.6.1 Left—Left associative operators are executed from
left to right. For example, 3—4-5 has two subtractions (-).
Since they are the same operator, they must be in the same

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
E 1460 — 92
i’

precedence group. Since — is left associative, 3—4 is performed
first resulting in (-1); then (-1)-5 is performed, resulting in
(=6).

9.1.6.2 Right—Right associative operators are executed
from right to left. For example, average sum 3 has two
operators in the same precedence group. Since they are right
associative, sum 3 is performed first resulting in 3; then
average 3 is performed, resulting in 3.

9.1.6.3 Non-Associative—Non-associative operators cannot
have more than one operator from the same precedence group
in the same expression unless parentheses are used. Thus the
expression 2*¥*3*%4 is illegal since ** (the exponentiation
operator) is non-associative.

9.1.6.4 The associativity of each operator is shown in Annex
A4,

9.1.7 Parentheses—One can use parentheses to force a
different order of execution. Expressions within parentheses
are always performed before ones outside of parentheses. For
example, the expression (3 + 4)*5 is executed as follows: 3 + 4
is within parentheses, so it is performed first regardless of
precedence, resulting in 7; then * is performed so that 7*5
results in 35. Similarly, (2**3)**4 is a legal expression which
results in 4096.

9.2 List Operators—The list operators do not follow the
default list handling, or the default primary time handling.

9.2.1 , (binary, left associative)—Binary , (list concatena-
tion) appends two lists, appends a single item to a list, or
creates a list from two single items. Binary , always loses the
associated primary times of arguments that are the results of
queries; use the merge operator instead. Its usage is:
<any-type> : = <any-type>, <any-type>

4,2) :=4,2
(4,“39’,2) = (4,“3”) y 2

9.2.2 , (unary, non-associative)—Unary , turns a single
element into a list of length one. It does nothing if the argument
is already a list. Unary , maintains the associated primary times
if its argument is the result of a query. Its usage is (where (,3)
means a list with 3 as its only element):
<any-type> : =, <any-type>

(3):=,3

9.2.3 Merge (Binary, Left Associative)—The merge opera-
tor appends two lists, appends a single item to a list, or creates
a list from two single items. It then sorts the result in
chronological order based on the primary times of the ele-
ments. Both arguments must be the result of a query; otherwise
null is returned. The primary times are maintained. Merge is
used to put together the results of two separate queries. Its
usage is (assuming that datal has a data value of 2 and a time
of 1991-01-02T00:00:00, and that data2 has these data values
1,3 and these time values 1991-01-01T00:00:00, 1991-01-
03700:00:00):
<any-type> : = <any-type> MERGE <any-type>

(1, 2, 3) : =datal MERGE data2
null : =(4,3) MERGE (2,1)

9.3 Where Operator, The where operator does not follow
the default list handling.

9.3.1 Where (binary, non-associative)—The where operator
performs the equivalent of a relational select ... where ... on its

left argument. In general, the left argument is a list, often the
result of a query to the database. The right argument is usually
of type Boolean (although this is not required), and must be the
same length as the left argument. The result is a list that
contains only those elements of the left argument where the
corresponding element in the right argument is Boolean true.
If the right argument is anything else, including false, null, or
any other type, then the element in the left argument is
dropped. Its usage is:

<any-type> : = <any-type> WHERE <any-type>

1,3) : =(1,2,3,4) WHERE (true,false,true,3)

9.3.1.1 Where handles mixed single items and lists in a
manner analogous to the other binary operators. If the right
argument to where is a single item, then if it is true, the entire
left argument is kept (whether or not it is a list); if it is not true,
then the empty list is returned. If only the left argument is a
single item, then the result is a list with as many of the single
items as there are elements equal to true in the right argument.
If the two arguments are lists of different length, then a single
null results. For example,

1 :=1 WHERE true

(1,2,3) : =(1,2,3) WHERE true

(1,1) : =1 WHERE (true,false,true)

null : = (1,2,3,4) WHERE (true,false,true)

9.3.1.2 Where is generally used to select certain items from
a list. The list is used as the left argument, and some
comparison operator is applied to the list in the right argument.
For example, potassium list where potassium_list > 5.0
would select from the list those values that are greater than 5.

9.3.1.3 Ir—The word it and its synonym they are used in
conjunction with where. To simplify where expressions, it
may be used in the right argument to represent the entire left
argument. For example, potassium_list where they > 5.0
would select those values from the list that are greater than 5.
It is most useful when the left argument is a complex
expression; for example, (potassium_list + sodium_list/3)
where it > 5.0 would assign the entire expression in parenthe-
ses to it. If there are nested where expressions, it refers to the
left argument of the innermost where. If it is used outside of a
where expression, then it has a value of null.

9.3.1.4 Where can also be used to count how many items in
a list are Boolean true by using this construct:

count(Boolean_list where it = true)

9.3.1.5 Where can calculate a weighted sum using this
construct (assume that risk1 to risk3 are Boolean flags):

sum((0.45, 0.25, 0.30) where (risk1, risk2, risk3))

9.4 Logical Operators:

9.4.1 Or (binary, left associative)—The or operator per-
forms the logical disjunction of its two arguments. If either
argument is true (even if the other is not Boolean), the result
is true. If both arguments are false, the result is false.
Otherwise the result is null. Its usage is:

<Boolean> : = <any-type> OR <any-type>
true : = true OR false
false : = false OR false
true : = true OR null
null : =false OR null
null : = false OR 3.4

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

9.4.1.1 Its truth table is given here. Other means any of

E 1460 - 92
true : =1< 2
true : = 1990-03-02T00:00:00< 1990-03-10T00:00:00

these data types: null, number, time, duration, or string.

(Right ar-
OR TRUE FALSE other gument)
(Left ar-
gument) TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
other TRUE NULL NULL

9.4.2 And (binary, left associative)—The and operator per-
forms the logical conjunction of its two arguments. If either
argument is false (even if the other is not Boolean), the result
is false. If both arguments are true, the result is true.
Otherwise the result is null. Its usage is:

<Boolean> : = <any-type> AND <any-type>
false : = true AND false
null : = true AND null
false : = false AND null

9.4.2.1 Its truth table is given here. Other means any of
these data types: null, number, time, duration, or string.

(Right ar-
AND TRUE TRUE other gument)
(Left ar-
gument) TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
other NULL FALSE NULL

9.4.3 Not (unary, non-associative)—The not operator per-
forms the logical negation of its argument. Thus true becomes
false, false becomes true, and anything else becomes null. Its
usage is:
<Boolean>: = NOT< any-type>
true: = NOT false
null : = NOT null

9.4.3.1 Its truth table is given here. Other means any of
these data types: null, number, time, duration, or string.

NOT | TRUE FALSE
| FALSE TRUE

other
NULL

9.5 Simple Comparison Operators:

9.5.1 = (binary, non-associative)—The = operator has two
synonyms: eq and is equal. It checks for equality, returning
true or false. If the arguments are of different types, false is
returned. If an argument is null, then null is always returned.
Its usage is:
<Boolean> : = <non-null> = <non-null>
false : =1=2
(null,true) : = (1,2) = (null,2)

9.5.1.1 Testing Null—Use is present instead of =to test
whether an argument is equal to null. See 9.6.15.

9.5.2 <> (binary, non-associative)—The <> operator has
two synonyms: ne and is not equal. It checks for inequality,
returning true or false. If the arguments are of different types,
true is returned. If an argument is null, then null is returned.
Its usage is:

<Boolean> : = <non-null>< >< non-null>
true : =1<>2

9.5.3 < (binary, non-associative)—The < operator has three
synonyms: It, is less than, and is not greater than or equal.
It is used on ordered types; if the types do not match, null is
returned. Its usage is:
<Boolean> : = <ordered>< <ordered>

10

true
true

: =2 days < 1 year
: ="aaa”’< “aab”

9.5.4 <= (binary, non-associative)—The < = operator has
three synonyms: le, is less than or equal, and is not greater
than. It is used on ordered types; if the types do not match, null
is returned. Its usage is:
<Boolean> : = <ordered> < = <ordered>

true:=1<=2

true : = 1990-03-02T00:00:00< = 1990-03-10T00:00:00
true : =2 days <=1 year

true : = ”aaa” < ="’aab”

9.5.5 > (binary, non-associative)—The > operator has three
synonyms: gt, is greater than, and is not less than or equal.
It is used on ordered types; if the types do not match, null is
returned. Its usage is:
<Boolean> : = <ordered> > <ordered>

false : =1>2

false : = 1990-03-02T00:00:00 > 1990-03-10T00:00:00

false : =2 days > 1 year

false : = ”aaa” > “aab”

9.5.6 > = (binary, non-associative)—The > = operator has
three synonyms: ge, is greater than or equal, and is not less
than. It is used on ordered types; if the types do not match, null
is returned. Its usage is:
<Boolean> : = <ordered> > = <ordered>

false :=1>=2
false : = 1990-03-02T00:00:00 > = 1990-03-10T00:00:00
false : = 2 days > =1 year

false : = ”aaa” >="aab”

9.6 Is Comparison Operators—The following comparison
operators include the word is, which can be replaced with are,
was, or were. An optional not may follow the is, negating the
result. For example, these are valid:

surgery_time WAS BEFORE discharge_time

surgery_time IS NOT AFTER discharge_time
9.6.1 Is Equal (binary, non-associative)—See 9.5.1.
9.6.2 Is Less Than (binary, non-associative)—See 9.5.3.
9.6.3 Is Greater Than (binary, non-associative)—See 9.5.5.

9.6.4 Is Less Than or Equal (binary, non-associative)—See
9.5.4.

9.6.5 Is Greater Than or Equal (binary, non-associative)—
See 9.5.6.

9.6.6 Is Within ... To (ternary, non-associative)—The is
within ... to operator checks whether the first argument is
within the range specified by the second and third arguments;
the range is inclusive. It is used on ordered types; if
the types do not match, null is returned. Its usage is:
<Boolean> : = <ordered> IS WITHIN< ordered> TO

<ordered>
:=3 IS WITHIN 2 TO 5
: =1990-03-10T00:00:00 IS WITHIN
1990-03-05T00:00:00 TO

true
true

1990-03-15T00:00:00
: =3 days IS WITHIN 2 days TO 5 months
:="ccc” IS WITHIN “a” TO “d”

true
true

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.

E 1460 — 92

Please contact ASTM Internatio@)(www.astm.org) for the latest information.
i’

9.6.7 Is Within ... Preceding (ternary, non-associative)—
The is within ... preceding operator checks whether the left
argument is within the inclusive time period defined by the
second two arguments (from the third argument minus the
second to the third). Its usage is:
<Boolean> : = <time> IS WITHIN <duration>

PRECEDING <time>
true : = 1990-03-08T00:00:00 IS WITHIN 3 days
PRECEDING 1990-03-10T00:00:00

9.6.8 Is Within ... Following (ternary, non-associative)—
The is within ... following operator checks whether the left
argument is within the inclusive time period defined by the
second two arguments (from the third argument to the third
plus the second). Its usage is:
<Boolean> : = <time> IS WITHIN <duration>

FOLLOWING <time>
false : = 1990-03-08T00:00:00 IS WITHIN 3 days
FOLLOWING 1990-03-10T00:00:00

9.6.9 Is Within ... Surrounding (ternary, non-associative)—
The is within ... surrounding operator checks whether the left
argument is within the inclusive time period defined by the
second two arguments (from the third argument minus the
second to the third plus the second). Its usage is:
<Boolean> : = <time> IS WITHIN< duration>

SURROUNDING <time>
true : = 1990-03-08T00:00:00 IS WITHIN 3 days
SURROUNDING 1990-03-10T00:00:00

9.6.10 Is Within Past (binary, non-associative)—The is
within past checks whether the left argument is within the time
period defined by the right argument (now minus the right
argument to now). Its usage is (assuming now is 1990-03-
09T00:00:00):
<Boolean> : = <time> IS WITHIN PAST< duration>

true : = 1990-03-08T00:00:00 IS WITHIN PAST 3
days

9.6.11 Is Within Same Day As (binary, non-associative)—
The is within same day as operator checks whether the left
argument is on the same day as the second argument. Its usage
is:
<Boolean> : = <time> IS WITHIN SAME DAY AS

<time>
true : = 1990-03-08T11.11.11 IS WITHIN SAME
DAY AS 1990-03-08T01.01.01

9.6.12 Is Before (binary, non-associative)—The is before
operator checks whether the left argument is before the second
argument; it is not inclusive. Its usage is:
<Boolean> : = <time> IS BEFORE< time>

false : = 1990-03-08T00:00:00 IS BEFORE
1990-03-07T00:00:00

false : = 1990-03-08T00:00:00 IS BEFORE
1990-03-08T00:00:00

9.6.13 Is After (binary, non-associative)—The is after op-
erator checks whether the left argument is after the second
argument; it is not inclusive. Its usage is:
<Boolean> : = <time> IS AFTER <time>

true : = 1990-03-08T00:00:00 IS AFTER
1990-03-07T00:00:00

11

9.6.14 Is In (binary, non-associative)—The is in operator
does not follow the default list handling. It checks for mem-
bership of the left argument in the right argument, which is
usually a list. If the left argument is a list, then a list results; if
the left argument is a single item, then a single item results. If
the right argument is a single item, then it is treated as a list of
length one. Its usage is:

<Boolean> : = <any-type> IS IN <any-type>
false : =2 IS IN (4,5,6)
(false,true) : = (3,4) IS IN (4,5,6)

9.6.15 Is Present (unary, non-associative)—The is present
operator has one synonym: is not null. (Similarly, is not
present has one synonym: is null.) It returns true if the
argument is not null, and it returns false if the argument is null.
Is present never returns null itself. This operator is used to test
whether an argument is null since arg = null always results in
null regardless of arg. Its usage is:

<Boolean> : = <any-type> IS PRESENT
true : =3 IS PRESENT
false : = null IS PRESENT

9.6.16 Is Null (unary, non-associative)—See 9.6.15.

9.6.17 Is Boolean (unary, non-associative)—The is boolean
operator returns true if the argument’s data type is Boolean.
Otherwise it returns false. Is boolean never returns null. Its
usage is:

<Boolean> : = <any-type> IS BOOLEAN
true : = false IS BOOLEAN
true : =3 IS NOT BOOLEAN
false : = null IS BOOLEAN

9.6.18 Is Number (unary, non-associative)—The is number
operator returns true if the argument’s data type is number.
Otherwise it returns false. Is number never returns null. Its
usage is:

<Boolean> : = <any-type> IS NUMBER
true : =3 IS NUMBER
false : = null IS NUMBER

9.6.18.1 The is number is useful for ensuring that a list is
all numbers before an aggregation operator is applied. This
avoids returning null. For example,

sum(serum_K where it IS NUMBER)

9.6.19 Is String (unary, non-associative)—The 1is string
operator returns true if the argument’s data type is string.
Otherwise it returns false. Is string never returns null. Its
usage is:

<Boolean> : = <any-type> IS STRING
true : ="asdf” IS STRING
false : = null IS STRING

9.6.20 Is Time (unary, non-associative)—The is time opera-
tor returns true if the argument’s data type is time. Otherwise
it returns false. Is time never returns null. Its usage is:

<Boolean> : = <any-type> IS TIME
true : = 1991-03-12T00:00:00 IS TIME
false : = null IS TIME

9.6.21 Is Duration (unary, non-associative)—The is dura-
tion operator returns true if the argument’s data type is
duration. Otherwise it returns false. Is duration never returns
null. Its usage is:

<Boolean> : = <any-type> IS DURATION

https://standards.iteh.ai/catalog/standards/sist/00ecf1c9-a8f9-42d2-a5d4-ac81554f3779/astm-e1460-92

