INTERNATIONAL STANDARD

ISO/IEC 23200-2

First edition 2023-07

Information technology — Radio frequency identification for item management —

Part 2:

Interference rejection performance test method between an Interrogator as defined in ISO/IEC 18000-63 and a heterogeneous wireless system

ISO/IEC 23200-2:2023 tps://standards.iteh.ai/catalog/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 23200-2:2023 https://standards.iteh.ai/catalog/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Con	ontents	P	Page				
Forev	reword		iv				
Intro	roduction		v				
1	Scope		1				
2	•						
3							
	Symbols and abbreviated terms						
4							
	5						
5 6	Conditions applicable to the test metho	ods	3				
		for testing					
		<u> </u>					
		Default tolerance					
		Total measurement uncertainty					
		Test result reporting					
		Test mounting material Test communication parameters					
6		RID PREVIEW					
U	6.1 Test setup for UHF RFID interroga						
		environment and					
		ct RN16Test setup for UHF RFID interrogator's ence environment	5				
7	Test procedure ISO/IEC 23	200-2:2023	6				
	7.1 General description and ards/sist/	18aab981-21ea-473e-b755-e6a38afe593a/iso-	6				
		r sensitivity power measurement under non-					
	•						
			7				
		ver sensitivity power measurement under	0				
Biblio	liography						

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 31, *Automatic identification and data capture techniques*.

A list of all parts in the ISO/IEC 23200 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Ultra-high-frequency (UHF) radio frequency identification (RFID) is a wireless technology that connects billions of everyday items to the Internet of Things (IoT), enabling consumers and businesses to identify, locate, authenticate and engage each item. IoT applications require a data connection between the physical and digital world, and UHF RFID is the ideal technology to bridge these realms, with the ability to bring low cost, unique identification to everyday items. Low-power wide-area networks (LoRaWAN) operate at long read ranges of 2 km to 3 km. While LoRaWAN devices have a very slow data-transfer rate, they are useful for transmitting sensor data. For example, LoRaWAN, WiFi-Halow (802.11ah), Sigfox, NB-IoT, WB-IoT, and LTE-M are representative technologies.

The frequencies used by LoRaWAN systems differ by region and country, as do the frequency bands designated for UHF RFID systems. In particular, LoRaWAN and RFID systems use different power levels and heterogeneous protocols in shared frequency bands. They are susceptible to interference generated by other wireless systems. This harsh signal propagation environment, combined with interference from coexisting wireless technologies, can lead to a degradation of the systems performance or even application failures.

iTeh STANDARD PREVIEW (standards.iteh.ai)

18O/IEC 23200-2:2023 https://standards.iteh.ai/catalog/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso-iec-23200-2-2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 23200-2:2023

https://standards.iteh.ai/catalog/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso-iec-23200-2-2023

Information technology — Radio frequency identification for item management —

Part 2:

Interference rejection performance test method between an Interrogator as defined in ISO/IEC 18000-63 and a heterogeneous wireless system

1 Scope

This document specifies a test method to evaluate the interference rejection performance of UHF RFID interrogators covered by ISO/IEC 18000-63, and specifies the general requirements and test requirements of that test method.

NOTE The interference rejection test method of this document is different to the one in ISO/IEC 18046-3:2020, 8.5. This document covers interference effects between the tags and a heterogeneous (diverse content) wireless system. ISO/IEC 18046-3 covers interference effect between tags and homogeneous (same content) wireless systems.

This test method enables the comparison of the relative interference rejection performance among UHF RFID interrogators under a single wireless interference environment. In addition, this document can be used in a benchmarking test, according to requirements in a given application or service.

2 mNormative references g/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso-

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 19762, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary

 $ISO/IEC\ 18046-2:2020, Information\ technology -- Radio\ frequency\ identification\ device\ performance\ test\ methods -- Part\ 2:\ Test\ methods\ for\ interrogator\ performance$

ISO/IEC 18000-63, Information technology — Radio frequency identification for item management — Part 63: Parameters for air interface communications at 860 MHz to 960 MHz Type C

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 19762 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

ISO/IEC 23200-2:2023(E)

3.1

heterogeneous wireless system

wireless system using different access technologies which share the same radio frequency band

EXAMPLE RFID, cell phone networks.

4 Symbols and abbreviated terms

4.1 Symbols

BLF backscatter-link frequency (BLF = $1/T_{pri}$ = DR/TRcal)

 $P_{\rm rcv}$ interrogator receiver sensitivity power level

 $P_{\rm rcv\ under_int}$ interrogator receiver sensitivity power level under a single wireless interference

environment

 $P_{\rm iRei}$ interference rejection power difference between a UHF RFID interrogator and other

wireless systems performance indicator

 G_{dBi} antenna gain

D distance between the tag and the antenna

R_X receiver 11eh STANDARD PREVIEW

T_X transmitter (standards.iteh.ai)

4.2 Abbreviated terms

<u> ISO/IEC 23200-2:2023</u>

DUT htt device under test hai/catalog/standards/sist/a8aab981-21ea-473e-b755-e6a38afe593a/iso-

160-23200-2-20

CSS chirp spread spectrum

FHSS frequency-hopping spread spectrum

SG signal generator

TE test equipment (RFID tag emulator)

ASK amplitude shift keying

PSK phase shift keying

FSK frequency shift keying

GFSK Gaussian frequency shift keying

BPSK binary phase shift keying

QAM quadrature amplitude modulation

OFDM orthogonal frequency division multiplexing

RHCP right hand circular polarization

LHCP left hand circular polarization

CW continuous wave

5 Conditions applicable to the test methods

5.1 Number of UHF RFID interrogator for testing

Unless otherwise specified, this document's test method can use a single UHF RFID interrogator. It can also be used by sampling more interrogators to satisfy statistical purposes.

5.2 Test environment

Unless otherwise specified, testing shall take place in an air environment with a temperature of $23 \, ^{\circ}\text{C} \pm 3 \, ^{\circ}\text{C}$ (73 $^{\circ}\text{F} \pm 5 \, ^{\circ}\text{F}$) and relative humidity within the range of 40 % to 60 %.

5.3 RF environment

The tests shall be performed in a known RF environment.

When measuring propagative tags (e.g. ISO/IEC 18000-63), an anechoic chamber is the recommended test environment.

5.4 Pre-conditioning

Where pre-conditioning is required by the test method, the interrogators to be tested shall be conditioned to the test environment for a period of 24 h before testing.

5.5 Default tolerance

Unless otherwise specified, a default tolerance of ±5 % shall be applied to the quantity values given to specify the characteristics of the test equipment (e.g. linear dimensions) and the test method procedures (e.g. test equipment adjustments).

5.6 Total measurement uncertainty

The total measurement uncertainty for each quantity determined by these test methods shall be stated in the test report.

NOTE Basic information is given in ISO/IEC Guide 98-3.

5.7 Test result reporting

Each test result shall be reported with the DUTs tested. Optionally, for statistical evalutation, minimum value, maximum value, mean value and standard deviation may be reported as well.

5.8 Test mounting material

For the tags, the tests can be performed with or without applying a mounting material. When the mounting material is defined by the tag manufacturer, the tests shall be performed with the specified mounting material in free air.

If the dielectric parameter, or other critical parameters of the material are known, they shall be mentioned in the test report.

5.9 Test communication parameters

All of the tests can be performed using communication parameters (forward and return link) to simulate the various interference signals. The test requester shall provide at least one communication parameter.

The test conditions shall be recorded in the test report.

6 Test set-up

6.1 Test setup for UHF RFID interrogator's receiver sensitivity under non-interference environment

This subclause defines the test apparatus and test circuits used to validate the reference performance of a UHF RFID interrogator. The specifics shall comply ISO/IEC 18046-2:2020, Clause 8.

The test setup shall be as shown in Figure 1 or Figure 2, using test equipment (TE), like a tag emulator or similar means, that is compliant with ISO/IEC 18000-63 in respect to all parameters that have impact on performance tests and that further allows a controlled variation of the BLF. Optionally, a phase shifter can be used. For the contactless test setup, the distance, *D*, shall be selected to ensure that the test is performed in the far field, unless a near field test is intended. If a near field test is performed, then this shall be noted in the test report.

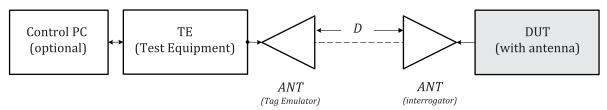


Figure 1 — Contactless test setup

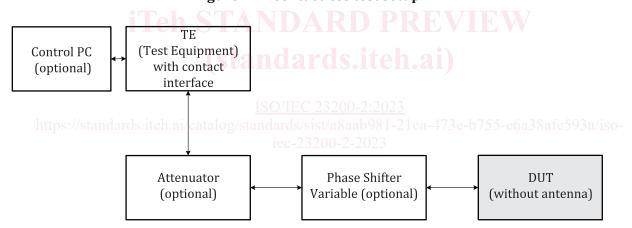


Figure 2 — Contact test setup

For the test, an interrogator shall start to inventory tags. The use of the Select command is optional and the command shall be ignored for the test.

The interrogator shall use one of the following sequences:

- a) Query Various Commands ACK RegRN
- b) Query Various Commands ACK

Various Commands can consist of one or more of the following commands: QueryRep and QueryAdjust.

The reception of a tag response by the reader shall be evaluated as successful under the condition: Reader sends Req_RN with correct Handle

6.2 Reader sends ACK with the correct RN16Test setup for UHF RFID interrogator's receiver sensitivity under interference environment

This subclause descibes the test apparatus and test circuits used to measure the changed performance of a DUT under the given interference environment.

The desired interference waveform shall be set to the required operating frequency, amplitude and modulation techniques by the signal generator (SG).

<u>Table 1</u> summarizes key features of the desired interference waveforms from sub-1GHz wireless communication technologies in the United States. Most of these technologies use an operating frequency band of 902 MHz to 928 MHz, which is one of the industrial, scientific and medical (ISM) bands.

 $\underline{\text{Figure 3}}$ and $\underline{\text{Figure 4}}$ show the test setup arrangements for interference rejection measurement.

Technologies	Frequency MHz	Modulation	Maximum range m	Data rates kbps	Multi access	TX power (without antenna gain) dBm
UHF RFID	902 to 928	ASK/PSK	10	26,7 to 128	FHSS	30
LoRa	902 to 928	GFSK	15,000 to 20,000	0,25 to 50	CSS	30
SigFox	902 to 928	BPSK/GFSK	3,000 to 10,000	0,1	ultra narrow band	14
Wi-SUN	902 to 928	GFSK	1,000	50 to 300	OFDM	13
Z-Wave	908,42	GFSK	30	100	_	0
IEEE 802.11ah	902 to 928	PSK/QAM	C 23 1,000 :2023	150 to 347,000	OFDM	30

Table 1 — Key features of desired interference waveforms in the US

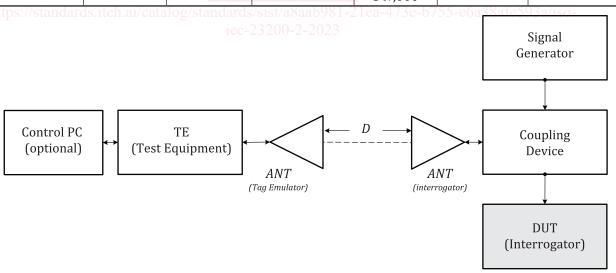


Figure 3 — Contactless test setup for rejection measurement