INTERNATIONAL STANDARD ISO 5189 First edition Fine ceramics (advanced ceramics, advanced technical ceramics) — Methods for chemical analysis of metal impurities in silicon dioxide powders using inductively coupled plasma-optical emission spectrometry ileh STANDARD PREVIEV (standards.iteh.ai) ISO 5189:2023 https://standards.iteh.ai/catalog/standards/sist/7cea704d-cb1a-4585-9bd9 ### PROOF/ÉPREUVE Reference number ISO 5189:2023(E) ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 5189:2023 https://standards.iteh.ai/catalog/standards/sist/7cea704d-cb1a-4585-9bd9- #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2023 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Co | Contents | | | | |------------|---|------------------|--|--| | Forewordiv | | | | | | 1 | Scope | 1 | | | | 2 | Normative references | 1 | | | | 3 | Terms and definitions | | | | | 4 | Analytes and ranges | | | | | 5 | Preparation of test sample | | | | | J | 5.1 General 5.2 Sampling 5.3 Drying 5.4 Weighing | 2
2
2 | | | | 6 | Reporting analytical values 6.1 Blank test 6.2 Evaluation of analytical values 6.3 Expression of analytical values | 2
2 | | | | 7 | Decomposition of test sample 7.1 Reagents 7.2 Apparatus and instruments 7.3 Sample decomposition 7.4 Blank test | 3
3
3 | | | | 8 | Determination of impurity elements 8.1 Reagents 8.2 Apparatus and instruments 8.3 Measurement 8.4 Drawing of the calibration curve 8.5 Calculation | 5
5
5
5 | | | | 9 | Test reporta6252e205b33/iso-5189-2023 | | | | | Ann | nex A (informative) Analytical results obtained from the interlaboratory test | 7 | | | | Bib | liography | 10 | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 206, Fine ceramics. $^{1585-9 \text{bd}9-1}$ Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. iν 1 # Fine ceramics (advanced ceramics, advanced technical ceramics) — Methods for chemical analysis of metal impurities in silicon dioxide powders using inductively coupled plasma-optical emission spectrometry #### 1 Scope This document specifies methods for the chemical analysis of metal impurities present in silicon dioxide powders used as a raw material for fine ceramics. It stipulates the methods for the determination of metal impurity elements in silicon dioxide powders that are decomposed by acid decomposition. The aluminium, cadmium, calcium, copper, iron, lead, lithium, magnesium, manganese, nickel, potassium, sodium, titanium, zinc and zirconium contents in the test solution are determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3696, Water for analytical laboratory use — Specification and test methods ${\it ISO~8656-1, Refractory~products-Sampling~of~raw~materials~and~unshaped~products-Part~1: Sampling~scheme}$ #### 3 Terms and definitions No terms and definitions are listed in this document. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/ #### 4 Analytes and ranges - a) Aluminium (Al), range of 1,0 mg/kg to 100 mg/kg. - b) Cadmium (Cd), range of 1,0 mg/kg to 100 mg/kg. - c) Calcium (Ca), range of 1,0 mg/kg to 100 mg/kg. - d) Copper (Cu), range of 1,0 mg/kg to 100 mg/kg. - e) Iron (Fe), range of 1,0 mg/kg to 100 mg/kg. - f) Lead (Pb), range of 1,0 mg/kg to 100 mg/kg. - g) Lithium (Li), range of 1,0 mg/kg to 100 mg/kg. - h) Magnesium (Mg), range of 1,0 mg/kg to 100 mg/kg. #### ISO 5189:2023(E) - i) Manganese (Mn), range of 1,0 mg/kg to 100 mg/kg. - j) Nickel (Ni), range of 1,0 mg/kg to 100 mg/kg. - k) Potassium (K), range of 1,0 mg/kg to 100 mg/kg. - l) Sodium (Na), range of 1,0 mg/kg to 100 mg/kg. - m) Titanium (Ti), range of 1,0 mg/kg to 100 mg/kg. - n) Zinc (Zn), range of 1,0 mg/kg to 100 mg/kg. - o) Zirconium (Zr), range of 1,0 mg/kg to 100 mg/kg. #### 5 Preparation of test sample #### 5.1 General Prepare the sample in accordance with ISO 8656-1, unless otherwise mutually agreed upon by the analyser and customer. #### 5.2 Sampling Collect the sample in accordance with ISO 8656-1. #### 5.3 Drying Place 10 g of the sample into a flat-type weighing bottle (60 mm \times 30 mm) and spread it uniformly at the bottom of the bottle. Place the bottle in an air bath at 110 °C \pm 5 °C for 2 h, then cover the mouth of the bottle and cool in a desiccator for 1 h. #### 5.4 Weighing Weigh the sample 1.0 g to the nearest 0.1 mg of the required quantity, using a balance. #### 6 Reporting analytical values #### 6.1 Blank test Upon analysis, perform a blank test to correct the measured values. #### 6.2 Evaluation of analytical values If the difference between the maximum and minimum analytical values does not exceed the tolerance value (<u>Table 1</u>), report the average value. However, if the difference between the two values exceeds the tolerance value, perform two additional analyses. If the difference between the values of these further two analyses does not exceed the tolerance value, report the average value thereof. However, if the difference again exceeds the tolerance value, report the median of the four analytical values. The results of the interlaboratory test are given in Annex A. Table 1 — Tolerances for analytical values Unit: mg/kg | Item | Value | Criteria | |-----------|-------|---| | Tolomonao | 5,0 | Applicable to amounts of less than 50 mg/kg | | Tolerance | 25 | Applicable to amounts of not less than 50 mg/kg | #### 6.3 Expression of analytical values Present the analytical values to two significant figures in mg/kg, in dryness. #### 7 Decomposition of test sample Silicon dioxide powders are decomposed by acid decomposition. #### 7.1 Reagents Use reagents of analytical grade. - **7.1.1 Water**, grade 1 or superior, as specified in ISO 3696. - **7.1.2 Hydrofluoric acid (HF),** (ISO 6353-3, R 67), 40,0 % to 42,0 % (mass fraction). - **7.1.3** Nitric acid (HNO₃), (ISO 6353-2, R19), 65 % (mass fraction). - **7.1.4 Hydrochloric acid (HCl),** (ISO 6353-2, R 13), 35 % (mass fraction). - **7.1.5 Hydrochloric acid solution (1+3).** Mix one part hydrochloric acid and three parts water (7.1.1). - **7.1.6** Nitric acid solution (1+3). Mix one part nitric acid and three parts water (7.1.1). #### 7.2 Apparatus and instruments Ordinary laboratory apparatus together with the following shall be used: - **7.2.1 Hot plate,** capable of heating at 400 °C. - 7.2.2 PTFE (Polytetrafluoroethylene) beakers (25 ml) and covers. - 7.2.3 Platinum dishes (20 ml or 30 ml) and covers. - 7.2.4 PP (Polypropylene) volumetric flask (10 ml). #### 7.3 Sample decomposition Weigh 1,0 g of the test sample and transfer it to a PTFE beaker (7.2.2) or platinum dishes (7.2.3). Add 15 ml of hydrofluoric acid (7.1.2) and 3 ml of nitric acid (7.1.3). Cover the beaker with a PTFE cover and heat gently on a hot plate. After heating for 1 h, open the PTFE cover and continue to heat gently on a hot plate to evaporate to dryness. Cool to room temperature. For determination of Al, Fe, Ti and Mn, add 8 ml of hydrochloric acid solution (7.1.5) and heat on a hot plate to dissolve the solid. For determination of Cd, Ca, Cu, Pb, Li, Mg, Ni, K, Na, Zn and Zr, add 8 ml of nitric acid solution (7.1.6) and heat on a hot plate to dissolve the solid. #### ISO 5189:2023(E) After cooling, transfer the solution to a 10 ml PP volumetric flask (7.2.4). Rinse the inner wall of the PTFE beaker with a small amount of water and pour the washings into the flask. Dilute with water up to the mark and mix well. This solution is designated as the sample solution. #### 7.4 Blank test To obtain the blank test value, perform the procedure described in 7.3 without taking the sample. #### 8 Determination of impurity elements #### 8.1 Reagents Use reagents of analytical grade. - **8.1.1 Water**, grade 1 or superior, as specified in ISO 3696. - **8.1.2 Hydrochloric acid solution (1+4).** Mix one part hydrochloric acid with four parts water (7.1.1). - **8.1.3** Nitric acid solution (1+4). Mix one part hydrochloric acid with four parts water (7.1.1). #### 8.1.4 Elemental standard solutions. - a) Aluminium standard solution (Al 1 mg/ml). ARD PREVIEW - b) Cadmium standard solution (Cd 1 mg/ml). ards.iteh.ai) - c) Calcium standard solution (Ca 1 mg/ml). - d) Copper standard solution (Cu 1 mg/ml). ISO 5189:2023 - e) Iron standard solution (Fe 1 mg/ml).6252e205b33/iso-5189-2023 - f) Lead standard solution (Pb 1 mg/ml). - g) Lithium standard solution (Li 1 mg/ml). - h) Magnesium standard solution (Mg 1 mg/ml). - i) Manganese standard solution (Mn 1 mg/ml). - j) Nickel standard solution (Ni 1 mg/ml). - k) Potassium standard solution (K 1 mg/ml). - l) Sodium standard solution (Na 1 mg/ml). - m) Titanium standard solution (Ti 1 mg/ml). - n) Zinc standard solution (Zn 1 mg/ml). - o) Zirconium standard solution (Zr 1 mg/ml). NOTE The SI-traceable commercial standard solutions are available. #### 8.1.5 Mixed standard solution (each element 5 mg/L). Transfer $500 \,\mu$ l of each standard solution (described in <u>8.1.4</u>) into a $100 \,m$ l volumetric flask. Dilute with water up to the mark and mix well. Pay attention to ensure that no precipitation occurs during mixing. Prepare the solution before every use. Considering the spectral interferences and the sensitivities, choose the higher-order spectral lines if available. 339,197 5 #### 8.2 Apparatus and instruments Ordinary laboratory apparatus together with the following shall be used: #### 8.2.1 ICP-OES. #### 8.3 Measurement Spray a portion of the mixed standard solution (8.1.4) into the plasma of ICP-OES and measure the emission intensity at an appropriate wavelength ($\underline{\text{Table 2}}$). Interferences can be encountered. Therefore, carefully choose the optimum wavelength such that it is free from overlapping peaks. Wavelength 1 Wavelength 2 **Element** nm nm Al 396,153 308.215 Cd 228,802 214,440 Ca 317,933 396,847 327,393 324,752 Cu 239,562 Fe 238,204 Pb 220,353 217.000 Li 670,784 610,362 Mg 285,213 279,077 257,610 259,372 Mn Ni 231,604 232,003 K 766,490 589,592 Na Ti 337,279 336,121 Zn 206,200 213,857 Table 2 — Examples of the analytical wavelength for each element #### 8.4 Drawing of the calibration curve Zr Transfer 1 ml, 5 ml, 10 ml, 15 ml and 20 ml of the mixed standard solution (8.1.5) stepwise to 100 ml volumetric flasks. For determination of Al, Fe, Ti and Mn, dilute the contents of each flask with hydrochloric acid solution (8.1.2) up to the mark and mix well. For determination of Cd, Ca, Cu, Pb, Li, Mg, Ni, K, Na, Zn and Zr, dilute the contents of each flask with nitric acid solution (8.1.3) up to the mark and mix well. Spray a portion of each solution into the plasma of ICP-OES and measure the emission intensity at an appropriate wavelength. 343,823 #### 8.5 Calculation Determine the concentration of each element in the test solution and in the blank solution from the calibration curve. Calculate the element content using <u>Formula (1)</u>. $$W_{\rm i} = (m_{\rm i} - m_0) \times 10 / m \tag{1}$$ #### ISO 5189:2023(E) #### where - W_i is each element content, in mg/kg; - m_i is the concentration of each element in the test solution, in mg/L; - m_0 is the concentration of each element in the blank solution, in mg/L; - *m* is the mass of the test portion, in g. #### 9 Test report The test report shall contain, as a minimum, the following information: - a) all information necessary for the identification of the sample, laboratory and date of analyses; - b) the method used, by reference to this document; - c) the results and the form in which they are expressed; - d) any deviations from the specified procedure; - e) any unusual features noted during the determination; - f) any procedures not specified in this document or any optional procedure that could have impacted the results. (standards.iteh.ai) https://standards.iteh.ai/catalog/standards/sist/7cea704d-cb1a-4585-9bd