INTERNATIONAL STANDARD

Third edition 2022-03

Plastics — Differential scanning calorimetry (DSC) —

Part 7: Determination of crystallization kinetics

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11357-7:2022</u> https://standards.iteh.ai/catalog/standards/sist/f87731d8-ca26-4e9e-91d9-006ff1479b63/iso-11357-7-2022

Reference number ISO 11357-7:2022(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11357-7:2022

https://standards.iteh.ai/catalog/standards/sist/f87731d8-ca26-4e9e-91d9-006ff1479b63/iso-11357-7-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forev	word		iv	
1	Scop	е		
2	Norn	ormative references		
3	Terms and definitions			
4	Prine	rinciple		
5	Apparatus and materials			
6	Test specimens		2	
7	Test	Test conditions and specimen conditioning		
8	Calibration			
-	8.1	Calibration in heating mode	2	
	8.2	Symmetry of temperature scale	2	
9	Procedure		2	
	9.1	General	2	
	9.2	Loading the test specimen into the crucible	3	
	9.3	Insertion of the crucibles into the instrument	3	
	9.4	Melting of the polymer		
	9.5	Isothermal crystallization		
	9.6	Non-Isothermal crystallization	5	
10	Expression of results		5	
	10.1 10.2	General	5	
		Methods of determination of crystallization kinetics	5	
		10.2.1 Isothermal crystallization	5	
		10.2.2 Non-isotnermal crystallization	/	
11	Prec	sion	8	
12	Test	Test report		
Anne	x A (in	formative) Formulae for crystallization kinetics of polymers	9	
Biblio	ograph	y		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 249, *Plastics*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This third edition cancels and replaces the second edition (ISO 11357-7:2015), which has been technically revised.

The main changes are as follows:

- an indication of suitable substances for checking the symmetry of the temperature scale has been added;
- the procedure of determination of the start temperature of isothermal crystallization has been corrected;
- an approach for the dependence of the rate constant of the Nakamura equation on temperature has been added.

A list of all parts in the ISO 11357 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Plastics — Differential scanning calorimetry (DSC) —

Part 7: **Determination of crystallization kinetics**

1 Scope

This document specifies two methods (isothermal and non-isothermal) for studying the crystallization kinetics of partially crystalline polymers using differential scanning calorimetry (DSC).

It is only applicable to molten polymers.

NOTE These methods are not suitable if the molecular structure of the polymer is modified during the test.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

ISO 11357-1, Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles

ISO 11357-3, Plastics — Differential scanning calorimetry (DSC) — Part 3: Determination of temperature and enthalpy of melting and crystallization

1357-7-2022

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472, ISO 11357-1, ISO 11357-3 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

crystallization kinetics

description of the rate of crystallization of a material taking into account the effects of variables such as time, temperature, pressure, stress, and molecular structure

Note 1 to entry: These factors and also any additives, fillers, or contaminants can modify the crystallinity of the polymer at the end of crystallization.

3.2

relative crystallinity

α

ratio between the crystallinity at a particular point in time or a particular temperature and the crystallinity at the end of crystallization

Note 1 to entry: The relative crystallinity can be expressed either as a ratio or as a percentage if multiplied by 100.

ISO 11357-7:2022(E)

Note 2 to entry: In DSC, the relative crystallinity can be determined as the ratio between the partial area of the crystallization peak, at each time or each temperature, and the total area of the peak.

4 Principle

The principle is as specified in ISO 11357-1.

5 Apparatus and materials

5.1 Differential scanning calorimeter, according to ISO 11357-1.

5.2 Crucibles, according to ISO 11357-1.

It can be necessary to verify that the material used for the crucibles does not modify the crystallization kinetics of the polymer.

- **5.3 Balance**, according to ISO 11357-1.
- **5.4** Heating mode calibration materials, according to ISO 11357-1.

5.5 Substances for checking the symmetry of the temperature scale

Suitable substances shall be selected showing low and defined undercooling^{[1],[2]}.

5.6 Purge gas, according to ISO 11357-1. nd ards.iteh.ai)

6 Test specimens

<u>ISO 11357-7:2022</u>

https://standards.iteh.ai/catalog/standards/sist/187731d8-ca26-4e9e-91d9-006ff1479b63/iso-Test specimens shall be as specified in ISO 11357-1.57-7-2022

7 Test conditions and specimen conditioning

Test conditions and specimen conditioning shall be as specified in ISO 11357-1.

8 Calibration

8.1 Calibration in heating mode

The calibration shall be done in accordance with ISO 11357-1.

8.2 Symmetry of temperature scale

The symmetry of the temperature scale in the heating and cooling modes shall be checked using materials specified in 5.5.

9 Procedure

9.1 General

The study of the crystallization kinetics of polymers can be done in an isothermal or a non-isothermal mode.

The relative crystallinity is given by the ratio of the partial enthalpy of crystallization, at each time or each temperature, and the total enthalpy of crystallization ΔH_c , as given in Formula (1):

$$\alpha_{t \text{ or } T} = \Delta H_{t \text{ or } T} / \Delta H_c \tag{1}$$

where

- $\alpha_{t \text{ or } T}$ is the relative crystallinity at a given time, *t*, in the isothermal mode or at a given temperature, *T*, in the non-isothermal mode;
- $\Delta H_{t \text{ or } T}$ is the enthalpy of crystallization at a given time, *t*, in the isothermal mode or at a given temperature, *T*, in the non-isothermal mode;
- $\Delta H_{\rm c}$ is the total enthalpy measured at the end of crystallization.

9.2 Loading the test specimen into the crucible

The loading of the test specimen shall be done as specified in ISO 11357-1.

To avoid self-heating, the mass of the specimen shall be chosen based on the heat evolved by the crystallization of the material. If the object of the measurements is to compare various grades of a polymer, maintain the mass within ± 0.5 mg.

9.3 Insertion of the crucibles into the instrument D D V D V

The crucibles shall be inserted into the instrument as specified in ISO 11357-1.

9.4 Melting of the polymer

Prior to isothermal or non-isothermal crystallization, all crystalline elements in the sample that can modify the crystallization kinetics shall be molten completely. 4-9e-91d9-006ff1479b63/so-

This is usually achieved by heating at a rate of 10 K/min or 20 K/min to a temperature of 30 K above the extrapolated end melting temperature and holding at this temperature for 3 min to 5 min.

NOTE Preliminary trials can be done to optimize these conditions and to prevent this step from changing the molecular structure of the polymer.

9.5 Isothermal crystallization

At the end of the melting stage, cool the specimen as quickly as possible to the selected temperature at which isothermal crystallization shall be measured.

A schematic representation of an isothermal crystallization run is shown in Figure 2.

The time, t_0 , at which the selected temperature is reached, is the start of the isothermal step.

The isothermal crystallization starts at the initial crystallization time, t_i , which is obtained by the first deviation of the DSC curve from the extrapolated baseline obtained by interpolation between peak start and end.

The time t_f at which the isothermal step ends (i.e. the time to obtain a complete crystallization curve) depends on the crystallization rate. If not clear from the DSC curve, it shall be set to five times the time taken to reach the maximum crystallization rate, t_{max} .

Carry out at least three runs at different temperatures.

ISO 11357-7:2022(E)

The isothermal temperatures are limited by the specifications of the instrument and data shall be rejected when the crystallization starts during cooling (see Figure 1).

NOTE Limiting instrument factors can be, for example, too high thermal lag or insufficient cooling capabilities.

Figure 1 — Bad isothermal run — Crystallization started before isothermal temperature reached

Key

Key

1 2

t а

- 1 DSC signal
- 2 temperature plot
- dQ/dtheat flow rate
- t time
- а Exothermic direction.

9.6 Non-isothermal crystallization

At the end of the melting stage, cool the specimen at the selected constant cooling rate to at least 10 K to 20 K below the final crystallization temperature.

Carry out at least three runs at different cooling rates.

The cooling rates used shall not exceed the highest rate at which the instrument is able to maintain the rate linear over the whole cooling temperature range.

10 Expression of results

10.1 General

See also ISO 11357-3.

NOTE The values calculated in <u>10.2.1</u> and <u>10.2.2</u> can be used to compare different polymers.

The study of the crystallization kinetics of polymers is still evolving and there are many models to describe the kinetics. The literature shall be used for the actual determination of the kinetics (see <u>Annex A</u>).

10.2 Methods of determination of crystallization kinetics

10.2.1 Isothermal crystallization

For each run at a specific isothermal temperature, determine the variation in α as a function of time (α_t) using Formula (1) and record the following values (see Figure 3 and Figure 4):

- starting time of the isothermal step (t = 0), t_0 ; 7.2022
- https://standards.iteh.ai/catalog/standards/sist/f87731d8-ca26-4e9e-91d9-006ff1479b63/isoinitial crystallization time, t_i ;
- Inicial crystallization time, *t*_i, 11357-7-20
- time to reach the maximum crystallization rate, t_{max}

(measured to the top of the crystallization peak);

- relative crystallinity at t_{max} , $a_{t \text{max}}$;
- time to reach a relative crystallinity of 0,5, $t_{0.5}$;
- enthalpy of crystallization, ΔH_c ;
- time to the end of crystallization, $t_{\rm f}$.

Key

1

t

а

degree of crystallization α

time t

