

AMERICAN SOCIETY FOR TESTING AND MATERIALS
100 Barr Harbor Dr., West Conshohocken, PA 19428
Reprinted from the Annual Book of ASTM Standards. Copyright ASTM

Standard Test Method for Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers¹

This standard is issued under the fixed designation E 1477; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers the measurement of the luminous reflectance factor of acoustical materials for use in predicting the levels of room illumination.
- 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- E 284 Terminology of Appearance²
- E 308 Practice for Computing the Colors of Objects by Using the CIE System²
- E 1164 Practice for Obtaining Spectrophotometric Data for Object-Color Evaluation²
- E 1264 Classification for Acoustical Ceiling Products³
- E 1331 Test Method for Reflectance Factor and Color by Spectrophotometry Using Hemispherical Geometry²
- E 1345 Practice for Reducing the Effect of Variability of Color Measurement by Use of Multiple Measurements²
- E 1347 Test Method for Color and Color-Difference Measurement by Tristimulus (Filter) Colorimetry²

3. Terminology

- 3.1 *Definitions*—Definitions of appearance terms in Terminology E 284 are applicable to this test method.
- 3.1.1 integrating sphere, n—an optical device used either to collect flux reflected or transmitted from a specimen into a hemisphere or to provide isotropic irradiation of a specimen from a complete hemisphere, consisting of an approximately spherical cavity with apertures (ports) for admitting and detecting flux, and usually having additional apertures over which sample and reference specimens are placed and for including or excluding the specularly reflected components.

(E 284)

- 3.1.2 *luminous*, *adj*—weighted according to the spectral luminous efficiency function $V(\lambda)$ of the CIE. (E 284)
- 3.1.3 reflectance factor, R, n—ratio of the flux reflected from the specimen to the flux reflected from the perfect reflecting diffuser under the same geometric and spectral conditions of measurement. (E 284)
- 3.1.4 perfect reflecting diffuser—ideal reflecting surface that neither absorbs nor transmits light, but reflects light in a diffused manner with the radiance of the reflecting surface being the same for all reflecting angles, regardless of the angular distribution of the incident light. (E 284)

4. Summary of Test Method

4.1 Test specimens are measured for (total) luminous reflectance factor by standard color-measurement techniques using a spectrophotometer, tristimulus (filter) colorimeter, or other reflectometer having a hemispherical optical measuring system, such as an integrating sphere. The specular component is included to provide the total reflectance factor condition. The instrument standard is referenced to the perfect reflecting diffuser. Luminous reflectance factor is calculated as CIE tristimulus value Y for the CIE 1964 (10°) standard observer and CIE standard illuminant D 65 (daylight) or F 2 (cool white fluorescent).

5. Significance and Use

- 5.1 Acoustical materials are often used as the entire ceiling of rooms and are therefore an important component of the lighting system. The luminous reflectance of all important components must be known in order to predict the level of illumination that will be obtained.
- 5.2 The reflecting properties of a surface are measured relative to those of a standard reflector, the perfect reflecting diffuser, to provide a reflectance factor. The luminous reflectance factor is calculated for a standard illuminant, and a standard observer, for the standard hemispherical (integrating-sphere) geometry of illumination and viewing, in which all reflected radiation from an area of the surface is collected. In this way the reflecting properties of an acoustical material can be represented by a single number measured and calculated under standard conditions.
 - 5.3 Acoustical materials generally have a non-glossy white

¹ This test method is under the jurisdiction of ASTM Committee E-12 on Color and Appearance and is the direct responsibility of Subcommittee E12.02 on Spectrophotometry and Colorimetry.

Current edition approved December 10, 1998. Published February 1999. Originally published as E 1477-92. Last previous edition E 1477-98.

² Annual Book of ASTM Standards, Vol 06.01.

³ Annual Book of ASTM Standards, Vol 04.06.