FINAL DRAFT

Technical
Specification

ISO/IEC DTS 6010

Programming languages — C— A
provenance-aware memory object
model for C

Reference number
ISO/IEC DTS 6010:2024(en)

ISO/IEC JTC 1/SC 22
Secretariat: ANSI

Voting begins on:
2024-12-16

Voting terminates on:
2025-02-10

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS

BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STANDARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.

© ISO/IEC 2024

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/IEC DTS 6010:2024(en)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

© ISO/IEC 2024 - All rights reserved
ii

https://www.iso.org
https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

Contents

1 Scope

2 Normative references

3 Terms and definitions

4 Environment

4.1 Execution environments.
4.2 Sizes of integer types <limits.h>
5 Language
5.1 Concepts. i
5.1.1 Storage durations and object lifetimes . .
5.12 Types
5.1.3 Representation of types
5.2 Comnversion
5.2.1 Lvalues, arrays and function designators
522 Pointers
5.2.3 Stringliterals
5.3 Expressions................
531 General......................
5.3.2 Postfixoperators
5.3.3 Address and indirection operators
5.3.4 Additive operators
5.3.5 Relational operators
5.3.6 Equalityoperators
5.3.7 Assignmentoperators
5.3.8 Declarations
5.3.9 Structure and union specifiers
5.3.10 Array declarations
5.3.11 Imitialization
5.4 Statementsandblocks
54.1 General................... ...
54.2 Theswitchstatement
5.5 Externaldefinitions.
55.1 General................... ...
5.5.2 Function definitions
6 Library

©ISO 2024 - All rights reserved

iii

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

6.1 Useoflibraryfunctions
6.2 Errors<errno.h>
6.3 Thelongjmpfunction
6.4 Thesignalfunction
6.5 Variable arguments <stdarg.h>
6.6 Atomics <stdatomic.h> e
6.6.1 TheATOMIC_ VAR INITMACIO . . . v v v v v v et e e
6.6.2 Atomic flag typeand operations
6.7 Integertypes <stdint.h>
6.7.1 Inte@ertypes i
6.7.2 Macros forintegerconstants
6.8 Input/output<stdio.h>
6.8.1 Streams
6.8.2 Files.
6.8.3 Fileaccessfunctions
6.8.4 Direction input/output functions
6.9 General utilities <stdlib.h>
6.9.1 Storage management functions
6.9.2 Multibyte/wide character conversion functions
6.10 String handling <string.h>
6.10.1 Copying functions
6.10.2 The strxfrmfunction
6.11 Threads <threads.h> it
6.11.1 Thetss_createfunction.
6.11.2 Thetss_setfunction
6.12 The st rftime function, Date and time <time.h>
6.13 Extended multibyte and wide character utilities <wchar.h>.
6.13.1 The fwprintffunction..........................
6.13.2 The fwscanffunction
6.13.3 The fgetwsfunction
6.13.4 Thewcsxfrmfunction
6.13.5 Thewcsftimefunction.

Annex A (informative) Portability issues
Annex B (informative) Bounds checking interfaces
Annex C (informative) Analyzability

Index

©ISO 2024 - All rights reserved

iv

23

24

25

26

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further
maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different
approval criteria needed for the different types of document should be noted. This
document was drafted in accordance with the editorial rules of the ISO/IEC Directives,
Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document
may involve the use of (a) patent(s). ISO and IEC take no position concerning the
evidence, validity or applicability of any claimed patent rights in respect thereof. As
of the date of publication of this document, ISO and IEC had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers
are cautioned that this may not represent the latest information, which may be obtained
from the patent database available at www.iso.org/patents and https://patents.iec.ch.
ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific
terms and expressions related to conformity assessment, as well as information
about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC,
see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 22, Programming languages, their environments and
system software interfaces.

Any feedback or questions on this document should be directed to the user’s
national standards body. A complete listing of these bodies can be found at
www.iso.org/members.html and www.iec.ch/national-committees.

©ISO 2024 - All rights reserved
1

https://www.iso.org/directives
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/patents
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

Introduction

The resolution of DR260 confirmed the concept of provenance of pointers, introduced as
means to track and distinguish pointer values that represent storage instances with the
same address. Implementations started to use that concept in optimisations relying on
provenance-based alias analysis, without it ever being clearly or formally defined, and
without it being integrated consistently with the rest of the C standard. This document
provides a solution for this: a provenance-aware memory object model for C to put C
programmers and implementers on a solid footing in this regard.

In addition to this document, https://cerberus.cl.cam.ac.uk/cerberus provides an
executable version of the semantics, with a web interface that allows one to explore
and visualise the behaviour of small test programs.

This document does not address subobject provenance.

©ISO 2024 - All rights reserved
2

https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
https://cerberus.cl.cam.ac.uk/cerberus
https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

1 Scope

This document specifies the form and establishes the interpretation of programs written
in the C programming language. It is not a complete specification of that language but
builds upon ISO/IEC 9899:2018 by constraining and clarifying the Memory Object
Model.

2 Normative references

The following documents are referred to in the text in such a way that some or all of
their content constitutes requirements of this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:2018, Programming languages - C

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to
be used in the natural sciences and technology.

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC
9899:2018 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following
addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp/ui

- IEC Electropedia: available at https://www.electropedia.org/

3.1

pointer provenance
provenance

entity that is associated to a pointer value in the abstract machine, which is either
empty, or the identity of a storage instance

3.2

storage instance
storage instance

inclusion-maximal region of data storage in the execution environment that is created
when either an object definition or an allocation is encountered

Note 1to entry: Storage instances are created and destroyed when specific language constructs (ISO/IEC
9899:2018, 6.2.4) are met during program execution, including program startup, or when specific library
functions (ISO/IEC 9899:2018, 7.22.3) are called.

©ISO 2024 - All rights reserved
3

https://www.iso.org/obp/ui
https://www.electropedia.org/
https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

Note 2 to entry: It is possible that a storage instance does not have a memory address and is not
accessible from all threads of execution.

Note 3 to entry: Storage instances have identities which are unique across the program execution.

Note 4 to entry: A storage instance with a memory address occupies a region of zero or more bytes of
contiguous data storage in the execution environment.

Note 5 to entry: One or more objects can be represented within the same storage instance, such as
two subobjects within an object of structure type, two const-qualified compound literals with identical
object representation, or two string literals where one is the terminal character sequence of the other.

3.3

indeterminate representation
object representation that either represents an unspecified value or is a non-value
representation

Note 1 to entry: This item is adapted from the term “indeterminate value” (ISO/IEC 9899:2018, 3.19.2)

3.4

unspecified value
valid value of the relevant type where this document imposes no requirements on
which value is chosen in any instance

[SOURCE:ISO/IEC 9899:2018, 3.19.3,modified - Note 1 to entry has been removed.]

3.5

non-value representation
object representation that does not represent a value of the object type

Note 1 to entry: This term was adapted from the term “trap representation” (ISO/IEC 9899:2018,
3.19.4)

4 Environment

4.1 Execution environments
The requirements in ISO/IEC 9899:2818, 5.1.2.3 shall apply in addition to the

following. For the purposes of this document, when processing of the abstract
machine is interrupted by the receipt of a signal, the representation of any object
modified by the handler that is neither a lock-free atomic object nor of type
volatile sig_atomic_t becomes indeterminate when the handler exits.

4.2 Sizes of integer types <limits.h>
The requirements in ISO/IEC 9899:2018, 5.2.4.2.1 shall apply. In addition if the value

and promoted type is in the range of the type intmax_t (for a signed type) or
uintmax_t (for an unsigned type), see ISO/IEC 9899:2018, 7.20.1.5, the expression
©ISO 2024 - All rights reserved

4

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

shall be suitable for use in #1 f preprocessing directives.

5 Language

5.1 Concepts

5.1.1 Storage durations and object lifetimes

For the purposes of this document the requirements from ISO/IEC 9899:2018, 6.2.4
shall apply in addition to the following. The lifetime of an object has a start and an
end, which both constitute side effects in the abstract machine, and is the set of all
evaluations that occur during execution. An object exists, has a storage instance that
is guaranteed to be reserved for it,1) has a constant address,? if any, and retains its
last-stored value throughout its lifetime.?’

The lifetime of an object is determined by its storage duration. There are four storage
durations: static, thread, automatic, and allocated. Allocated storage and its duration
are described in ISO/IEC 9899:2018, 7.22.3.

For the purposes of this document storage duration applies to an object’s storage
instance. Storage instances for string literals and some compound literals has static
storage duration.¥ There is a distinct instance of the object and distinct associated
storage instance per thread for the storage instance of an object with thread storage
duration. Storage instances of temporary objects has automatic storage duration.

5.1.2 Types

This document builds on the requirements of ISO/IEC 9899:2018, 6.2.5 regarding how
a pointer type can be derived from a function type or an object type as follows.

A pointer type can be derived from a function type or an object type, called the
referenced type. A pointer type describes an object whose value provides a reference to
an entity of the referenced type. If the type is an object type, the pointer also carries a
provenance, typically identifying the storage instance holding the corresponding object,
if any; its value is valid if and only if it has a non-empty provenance, there is a live
storage instance for that provenance, and the address is either within or one-past the
addresses of that storage instance. A pointer-to-function is valid if it refers to a valid
function definition of the program. Pointers additionally can have a special value null
that is different from the address of any storage instance and has no provenance (for
object pointers),” or from the address of any function of the program (for function

DString literals, compound literals or certain objects with temporary lifetime can share a storage
instance with other such objects.

2)The term “constant address” means that two pointers to the object constructed at possibly different
times will compare equal. The address can be different during two different executions of the same
program.

3)1In the case of a volatile object, the last storage is not required to be explicit in the program.

#Such are for example compound literals that are evaluated in file scope or that are const qualified
and have only constant expressions as initializers.

5)A pointer object can be null by implicit or explicit initialization or assignment with a null pointer
constant or by another null pointer value. A pointer value can be null if it is either a null pointer constant
or the result of an lvalue conversion of a null pointer object. A null pointer will not appear as the result

©ISO 2024 - All rights reserved
5

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

pointers). If a pointer value is neither valid nor null, it is invalid. A pointer type derived
from the referenced type T is sometimes called a “pointer to T”. The construction of a
pointer type from a reference type is called “pointer type derivation”. A pointer type
is a complete object type.®) Under certain circumstances, a pointer value can have
an address that is the end address of one storage instance and the start address of
another. It (and any pointer value derived from it by means of arithmetic operations)
shall then not be used in ways that require (in different usages) more than one of these
provenances.

In addition to the requirements on the representation and alignment of pointers in
ISO/IEC 9899:2018, it is implementation-defined whether other groups of pointer
types have the same representation or alignment requirements.”’

5.1.3 Representation of types

5.1.3.1 General

For the purposes of this document, the requirements of ISO/IEC 9899:2018, 6.2.6.1
shall apply in addition to the following. An object is represented (or held) by a storage
instance (or part thereof) that is either created by an allocation (for allocated storage
duration), at program startup (for static storage duration), at thread startup (for thread
storage duration), or when the lifetime of the object starts (for automatic storage
duration).

An addressable storage instance® of size m provides access to a byte array of length m.
Each byte of the array has an abstract address, which is a value of type uintptr_t that
is determined in an implementation-defined manner by pointer-to-integer conversion.
The abstract addresses of the bytes are increasing with the ordering within the array,
and they shall be unique and constant during the lifetime. The address of the first byte
of the array is the start address of the storage instance, the address one element beyond
the array at index m is its end address. The abstract addresses of the bytes of all storage
instances of a program execution form its address space. A storage instance Y follows
storage instance X if the start address of Y is greater or equal than the end address
of X, and it follows immediately if they are equal. If the lifetimes of any two distinct
addressable storage instances X and Y overlaps, either Y follows X or X follows Y in
the address space. This document imposes no other constraints about such relative
position of addressable storage instances whenever they are created.”

of an arithmetic operation.

6)The provenance of a pointer value and the property that such a pointer value is valid or not
are generally not observable. In particular, in the course of the same program execution the same
pointer object with the same representation bytes (ISO/IEC 9899:2018, 6.2.6) can sometimes represent
valid values but with different provenance (and thus refer to different objects). Sometimes the object
representation can even be indeterminate, namely when the lifetime of the storage instance has ended
and no new storage instance uses the same address. Yet, this information is part of the abstract machine
and can restrict the set of operations that can be performed on the pointer.

7)An implementation can represent all pointers the same and with the same alignment requirements.

8) All storage instances that do not originate from an object definition with register storage class
are addressable by using the pointer value that was returned by their allocation (for allocated storage
duration) or by applying the address-of operator & (ISO/IEC 9899:2018, 6.5.3.2) to the object that gave
rise to their definition (for other storage durations).

9)This means that no relative ordering between storage instances and the objects they represent

©ISO 2024 - All rights reserved
6

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

ISO/DIS TS6010(en)

The object representation of a pointer object does not necessarily determine
provenance of a pointer value; at different points of the program execution, identical
object representations of pointer values can refer to distinct storage instances. Unless
stated otherwise, a storage instance becomes exposed when a pointer value p of

effective type T« with this provenance is used in the following contexts:1?

11)

Any byte of the object representation of p is used in an expression.

The byte array pointed-to by the first argument of a call to the fwrite library
function intersects with an object representation of p.

p is converted to an integer.

- pisused as an argument to a $p conversion specifier of the print f family of
library functions.!?

Nevertheless, if the object representation of p is read through an Ivalue of a pointer type
S+ that has the same representation and alignment requirements as T , that lvalue has
the same provenance as p and the provenance does not thereby become exposed.!®
Exposure of a storage instance is irreversible and constitutes a side effect in the abstract
machine.

Unless stated otherwise, pointer value p is synthesized if it is constructed by one of the
following: 14

- Any byte of the object representation of p is changed

- by an explicit byte operation
- by type punning with a non-pointer object or with a pointer object that only
partially overlaps,

- or by a call to memcpy or similar function that does not write the entire
pointer or representation where the source object does not have an effective
pointer type.

- The object representation of p intersects with a byte array pointed-to by the first
argument of a call to the fread library function.

can be deduced from syntactic properties of the program (such as declaration order or order inside a
parameter list) or sequencing properties of the execution (such as one instantiation happening before
another).

10)pointer values with exposed provenance can alias in ways that cannot be predicted by simple data
flow analysis.

1DThe exposure of bytes of the object representation can happen through a conversion of the address
of a pointer object containing p to a character type and a subsequent access to the bytes, or by reading the
representation of a pointer value p through a union with a type that is not a pointer type (for example
an integer type) or with a pointer type that has a different object representation than the original pointer.

12)Passing a pointer value to a $s conversion does not expose the storage instance.

13)This means that pointer members in a union can be used to reinterpret representations of different
character and void pointers, different st ruct pointers, different union pointers or pointers with
different qualified target types.

14)gynthesized pointer values can alias in ways that cannot be predicted by simple data flow analysis.

©ISO 2024 - All rights reserved
7

https://standards.iteh.ai/catalog/standards/iso/de3583c6-f277-4853-9df7-5f9e9c5e0fa8/iso-iec-dts-6010

