

International Standard

ISO 12744

Copper, lead, zinc and nickel concentrates — Experimental methods for checking the precision of sampling iTeh Standards

Third edition 2025-03

Concentrés de cuivre, de plomb, de zinc et de nickel — Méthodes expérimentales de contrôle de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de la fidélité de l'échantillonnage **de la fidélité** de l'échantillonnage **de la fidélité** de la fidélité d

Document Preview

ISO 12744:2025

https://standards.iteh.ai/catalog/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-2025

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 12744:2025

https://standards.iteh.ai/catalog/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-2025

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Contents

Forew	ord		iv
1	Scope	е	1
2	Norm	native references	1
3	Term	is and definitions	1
4	Symb	ools	1
5	Gene 5.1 5.2 5.3 5.4 5.5	ral conditions General Number of lots Number of increments and number of samples Sample processing and analysis Frequency of precision checks	2 2 2 2 3 3
6	Meth 6.1 6.2	od of experiment Interleaved samples Sample processing and analysis 6.2.1 General 6.2.2 Sample processing method 1 6.2.3 Sample processing method 2 6.2.4 Sample processing method 3	3 4 4 5 5 6
7	Evalu 7.1 7.2 7.3 7.4	Iation of experimental data General Sample processing method 1 Sample processing method 2 Sample processing method 3	7 7 7 8 10
8	Asses 8.1 8.2 8.3 8.4	ssment of results and action General Sampling Sample processing Analysis	11 .11 .11 .11 .11
https: 9	Reco	dards.iieh.ai/catalog/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-202 rding of data	25 11
Annex	A (inf	formative) Recording of sampling data	12
Biblio	graph	y	16

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 183, *Copper, lead, zinc and nickel ores and concentrates*.

This third edition cancels and replaces the second edition (ISO 12744:2006), which has been technically revised.

The main changes are as follows:

ISO 12744:2025

— the precisions of sampling, sample preparation and measurement are now estimated from the mean squared differences between duplicates rather than simply the mean differences, which provides a better unbiased estimate of precision.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Copper, lead, zinc and nickel concentrates — Experimental methods for checking the precision of sampling

WARNING — This document can involve hazardous materials, operations and equipment. It is the responsibility of the user of this document to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This document specifies methods for checking the precision of primary sampling, sample processing, chemical analysis, physical testing and determination of moisture content of copper, lead, zinc and nickel concentrates being carried out in accordance with the methods specified in ISO 12743, expressed in terms of standard deviations.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10258, Copper sulfide concentrates — Determination of copper content — Titrimetric methods

ISO 11441, Lead sulfide concentrates — Determination of lead content — Back titration of EDTA after precipitation of lead sulfate

ISO 12743, Copper, lead, zinc and nickel concentrates — Sampling procedures for determination of metal and moisture content

<u>SO 12744:2025</u>

3th Terms and definitions^{/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-2025}

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

4 Symbols

- *k* number of lots
- *n* number of increments
- R_1 absolute difference between duplicates for interleaved samples A and B
- R_2 absolute difference between means for divided interleaved samples A_1 and A_2 , and B_1 and B_2
- R_3 absolute difference between means for interleaved sample A and interleaved sample B
- s estimated value of standard deviation, σ

- s_{1}^{2} estimated variance from R_1^2
- s_{2}^{2} estimated variance from R_2^2
- s_{3}^{2} estimated variance from R_3^2
- estimated standard deviation of analysis S_A
- estimated standard deviation of sample processing S_P
- estimated standard deviation of sampling SS
- estimated standard deviation of sampling and sample processing SSP
- estimated total standard deviation of sampling, sample processing and analysis S_T
- first duplicate result for interleaved sample, where *i* = 1 and 2 and indicates interleaved sample A or B X_{i1}
- second duplicate result for interleaved sample, where i = 1 and 2 and indicates interleaved sample *x*_{i2} A or B
- first duplicate result for interleaved sample, where i = 1 and 2 and indicates interleaved sample A X_{ii1} or B, and j = 1 or 2 and indicates laboratory samples A_1 or A_2 , and B_1 or B_2
- second duplicate result for sample, where i = 1 and 2 and indicates interleaved sample A or B, and X_{ij2} j = 1 or 2 and indicates laboratory samples A_1 or A_2 , and B_1 or B_2
- \overline{X} mean value of duplicate results
- mean of mean value of duplicate results $\overline{\overline{x}}$
- $\overline{\overline{x}}$ mean of $\overline{\overline{x}}$ values, and grand mean for sample processing method 3
- $\frac{1}{x}$ grand mean of all results for sample processing methods 1 and 2

5 **General conditions**

5.1 General

The determination of precision of primary sampling is based on collecting pairs of interleaved samples from each lot. If sample processing and measurement are also carried out in duplicate, it is possible to determine the precision of sample processing and analysis.

5.2 Number of lots

It is recommended that pairs of interleaved samples should be collected from more than 20 lots of the same type of concentrate, in order to reach a reliable conclusion. The lot size shall be chosen to ensure that more than 20 lots are available for the precision determination.

5.3 Number of increments and number of samples

The minimum number of increments for checking precision should preferably be twice the number determined in accordance with ISO 12743. Hence, if the number of increments required for routine sampling is *n* and one lot sample is constituted, the minimum number of increments should be 2*n*, and two interleaved samples shall be constituted.

ISO 12744:2025(en)

Alternatively, if the precision is being checked as part of routine sampling, *n* increments may be taken and two interleaved samples constituted, each comprising n/2 increments. The sampling precision thus obtained shall be divided by $\sqrt{2}$ to obtain the sampling precision for lot samples comprising *n* increments.

5.4 Sample processing and analysis

Sample processing shall be carried out in accordance with ISO 12743. The analysis of samples shall be carried out according to the methods specified in the relevant International Standards, such as ISO 10258, ISO 11441 and ISO 12739.

5.5 Frequency of precision checks

It is recommended that, even after a precision check has been conducted, further checks should be carried out at regular intervals. Precision checks should also be carried out when there is a change in equipment.

Because of the large amount of work involved in checking precision, it is recommended that checks should be carried out as a part of routine sampling and analysis.

6 Method of experiment

6.1 Interleaved samples

Each alternate primary increment shall be diverted so that pairs of interleaved samples A and B are formed. The number of divided increments per primary increment should be the same as for routine sampling. An example of a sampling plan for producing pairs of interleaved samples A and B is shown in <u>Figure 1</u>.

(https://standards.iteh.ai) Document Preview

ISO 12744:2025

https://standards.iteh.ai/catalog/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-2025

Figure 1 — Example of a plan for interleaved duplicate sampling

6.2 Sample processing and analysis

6.2.1 General

The pairs of interleaved samples A and B taken in accordance with <u>6.1</u> shall be divided separately and subjected to method 1, method 2 or method 3 sample processing and analysis as described in <u>6.2.2</u>, <u>6.2.3</u> or <u>6.2.4</u>.

6.2.2 Sample processing method 1

The two interleaved samples A and B shall be divided separately to prepare four laboratory samples: A_1 , A_2 , B_1 and B_2 . These laboratory samples shall each be analysed in duplicate, and the duplicates designated as follows:

- x_{111} and x_{112} for sample A₁;
- x_{121} and x_{122} for sample A₂;
- x_{211} and x_{212} for sample B₁;
- x_{221} and x_{222} for sample B₂.

See Figure 2.

The eight determinations shall be run in random order, by the same analyst on the same day using the same analytical equipment. An example is given in <u>Annex A</u>.

NOTE By using method 1, the estimated precisions of sampling, sample processing and analysis can be obtained separately.

Figure 2 — Flowsheet for sample processing method 1

6.2.3 Sample processing method 2

Sample A shall be divided to prepare two laboratory samples: A_1 and A_2 . From sample B, only one laboratory sample shall be prepared. The laboratory samples shall each be analysed in duplicate, and the duplicates designated as follows:

- x_{111} and x_{112} for sample A₁;
- x_{121} and x_{122} for sample A₂;
- x_{21} and x_{22} for sample B.

See <u>Figure 3</u>.

ISO 12744:2025(en)

The six determinations shall be run in random order, by the same analyst on the same day using the same analytical equipment.

NOTE By using method 2, the estimated precisions of sampling, sample processing and analysis can be obtained separately. However, the estimated values will be less precise than those obtained using method 1.

Figure 3 — Flowsheet for sample processing method 2

6.2.4 Sample processing method 3 //standards.iteh.ai

From each of the two interleaved samples A and B, one laboratory sample shall be prepared. The two laboratory samples A and B shall be analysed in duplicate, and the measurements obtained shall be designated as follows:

```
— x_{11} and x_{12} for sample A;
```

<u>ISU 12/44:2025</u>

https://standards.iteh.ai/catalog/standards/iso/8b271ba6-167d-4002-a74e-ea62ec0de797/iso-12744-2025 — x_{21} and x_{22} for sample B.

See Figure 4.

The four determinations shall be run in random order, by the same analyst on the same day using the same analytical equipment.

NOTE By using method 3, only the estimated precision of analysis and the combined precision of sampling and sample processing are obtained.