INTERNATIONAL STANDARD

ISO 3501

Third edition 2021-12

Plastics piping systems — Mechanical joints between fittings and pressure pipes — Test method for resistance to pull-out under constant longitudinal force

Systèmes de canalisations en plastique — Assemblages mécaniques entre raccords et tubes sous pression — Méthode d'essai de résistance à l'arrachement sous une force longitudinale constante

(https://standards.iteh.ai)

Document Preview

ISO 3501:2021

https://standards.iteh.ai/catalog/standards/iso/93c2879f-aac9-4614-ad69-f98110f51bf1/iso-3501-202

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 3501:2021

https://standards.iteh.ai/catalog/standards/iso/93c2879f-aac9-4614-ad69-f98110f51bf1/iso-3501-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents		Page	
Fore	Forewordiv		
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Principle	1	
5	Test parameters and requirements	1	
6	Apparatus	2	
7	Test pieces	3	
8	Procedure	3	
9	Test report	3	
Ann	nex A (normative) Test parameters	4	

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 3501:2021

https://standards.iteh.ai/catalog/standards/iso/93c2879f-aac9-4614-ad69-f98110f51bf1/iso-3501-2021

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 5, General properties of pipes, fittings and valves of plastic materials and their accessories — Test methods and basic specifications, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 155, Plastics piping systems and ducting systems, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This third edition cancels and replaces the second edition (ISO 3501:2015), which has been technically revised.

The main changes are as follows:

- the reference to leakage has been removed from the test report;
- editorial corrections have been introduced.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Plastics piping systems — Mechanical joints between fittings and pressure pipes — Test method for resistance to pull-out under constant longitudinal force

WARNING — Persons using this document should be familiar with normal laboratory practice, if applicable. The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This document specifies a method for checking the ability of assembled uniaxial joints between fittings and plastic pressure pipes to withstand longitudinal tensile stresses. The test applies regardless of the design and material of the fitting used for jointing plastics pipe.

This test method is not applicable to fusion-welded joints.

2 Normative references Teh Standards

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3126, Plastics piping systems — Plastics components — Determination of dimensions

ISO 17456:2006, Plastics piping systems — Multilayer pipes — Determination of long-term strength

ottps://standards.itab.ai/catalog/standards/iso/93c2879f.aac0_4614_ad60_f98110f51bf1/iso_3501_2021

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4 Principle

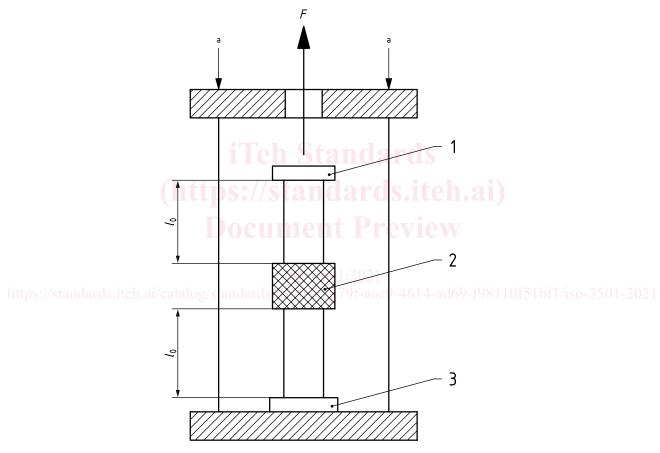
An assembled joint is subjected to a longitudinal tensile force calculated as a function of the pipe dimensions and the maximum permissible induced hoop stress of the relevant pipe.

5 Test parameters and requirements

The test parameters of the standard which refers to this document shall be used and the requirements shall be fulfilled. If one or more parameters are not given in the referring document, the ones given in Annex A shall apply.

The following test parameters should be given by the standard which refers to this document:

a) pull-out force (N);


ISO 3501:2021(E)

- b) test duration (h);
- c) test temperature (°C);
- d) free length (mm).

6 Apparatus

Tensile loading equipment, capable of applying a constant tensile force, with a tolerance of ± 2 %, along the longitudinal axis of the pipe(s) connected to the mechanical fitting being tested.

The tensile force can be applied directly or via a lever arm, using dead weights or a fluid-activated loading cylinder. The test framework, as illustrated in <u>Figure 1</u>, shall be designed to permit the transmission of the applied force to the joint and fitting assembly without reduction by frictional losses generated by the supporting structure.

Key

- 1 end load bearing type A end cap
- 2 fitting to be tested
- 3 end load bearing type A end cap
- F applied longitudinal end load force
- l_0 pipe free length
- ^a End load reaction forces generated within the loading framework.

Figure 1 — Typical apparatus

The test temperature shall be maintained at ± 2 °C of the specified temperature.