INTERNATIONAL STANDARD

ISO 9982

Third edition

Belt drives — Pulleys and V-ribbed belts for industrial applications — PH, PJ, PK, PL and PM profiles: dimensions

Transmissions par courroies — Poulies et courroies striées pour des applications industrielles — Profils PH, PJ, PK, PL et PM : dimensions

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 9982 https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982

PROOF/ÉPREUVE

Reference number ISO 9982:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 9982

https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Website: www.iso.org
Published in Switzerland

Co	ntent	S	Page
Fore	word		iv
Intr	oductio	n	v
1	Scope		
2	Norn	native references	1
3		ns and definitions	
4	Svml	ools	1
5	_	eys	
	5.1 5.2 5.3 5.4 5.5	Groove dimensions and tolerances Minimum effective diameter Tolerances on finished pulley 5.3.1 Checking conditions 5.3.2 Groove-to-groove diameter tolerances 5.3.3 Radial circular run-out 5.3.4 Axial circular run-out 5.3.5 Diameter over balls 5.3.6 Groove finish Pitch diameter, dp Designation of pulleys	
6	6.1 6.2 6.3 6.4	Belt dimensions Measurement of effective belt lengts.iteh.ai) 6.2.1 Measuring fixture — Apparatus 6.2.2 Measuring force ISO/PRF 9982 6.2.3 https://procedurech.ai/catalog/standards/sist/db756eb7-e16e-42de-b5bd-6.2.4 Manufacturing to legances/iso-prf-9982 Measurement of centre distance variation Designation of belts	
Bibl	iograph	ıy	12

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 41, *Pulleys and Belts (including veebelts)*, Subcommittee SC 1, *Friction*.

https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-

This third edition cancels and replaces the second edition (ISO 9982:1998), which has been technically revised. The main changes compared to the previous edition are as follows:

- updating of the normative reference listing;
- clarification made where the document is not for elastic belts:
- revision of 5.3.6 to reference ISO 254 for pulley roughness;
- removal of the current roughness values;
- specification of the maximum pulley groove radius (<u>Table 2</u>);
- specification of the minimum pulley groove radius of PH and PJ profiles (Table 2);
- specification of the maximum belt groove bottom radius of PH and PJ profiles (Table 8);
- specification of the measuring pulleys and measuring forces of PK, PL and PM profiles (Table 9).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

A V-ribbed belt drive is composed of an endless belt with a longitudinally ribbed traction surface which engages and grips, by friction, pulley grooves of similar shape. The belt ribbed surface fits the pulley grooves to make nearly total contact.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 9982 https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 9982

https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982

Belt drives — Pulleys and V-ribbed belts for industrial applications — PH, PJ, PK, PL and PM profiles: dimensions

1 Scope

This document specifies the principal dimensional characteristics of V-ribbed pulley groove profiles, together with the corresponding endless V-ribbed belts, of PH, PJ, PK, PL and PM profiles which are used for general industrial applications except elastic belts.

The PK belt was originally established for automotive accessory drive applications and ISO 9981 deals specifically with that particular field.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document. PREVIEW

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/ da4a3602d879/iso-prf-9982

4 Symbols

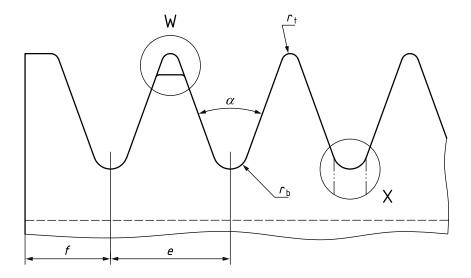
For the purpose of this document, the symbols given in Table 1 apply.

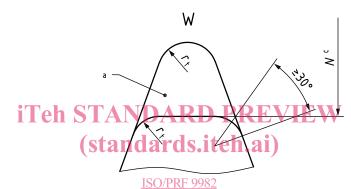
Table 1 — Symbols

Symbol	Symbol Designation			
b	nominal width of the belt			
$b_{\rm e}$	effective line differential			
$d_{ m B}$	checking ball or rod diameter	mm		
d_{e}	effective diameter	mm		
$d_{\rm o}$	outer diameter	mm		
$d_{\rm p}$	pitch diameter			
E	centre distance between the pulleys	mm		
$E_{\rm max}$	maximum centre distance between the pulleys	mm		
E_{\min}	minimum centre distance between the pulleys	mm		
ΔE	centre distance variation	mm		
e	groove pitch	mm		
F	measuring force per rib	N		
f	distance between the outside of the rim and the axis of the first groove	mm		
h	belt height	mm		
K	diameter over balls or rods	mm		

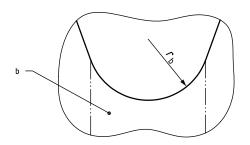
Table 1 (continued)

Symbol	Designation	Unit
$L_{\rm e}$	effective length	mm
N	half the difference between the outer diameter and the diameter over balls or rods	mm
n	number of ribs	_
p_{b}	rib pitch	mm
$r_{\rm b}$	groove bottom radius of pulleys or rib tip radius of belts	mm
r_{t}	groove transitional radius of pulleys or rib bottom radius of belts	mm
Ra	surface roughness	μm
U _e	pulley effective circumference	mm
X	half the difference between the effective diameter and the diameter over balls or rods	mm
α	groove or rib angle	0


5 Pulleys

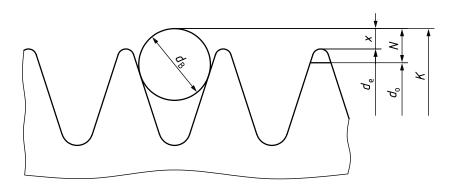

5.1 Groove dimensions and tolerances

The groove dimensions of PH, PJ, PK, PL and PM belts are shown in Figure 1 and 2, and given in Table 2.


iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 9982 https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982

https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-da4a3602d879/iso-prf-9982


Key

- e groove pitch
- *f* distance between the outside of the rim and the axis of the first groove
- $\it N$ half the difference between the outer diameter and the diameter over balls or rods
- r_{b} groove bottom radius of pulleys or rib tip radius of belts
- r_{t} groove transitional radius of pulleys or rib bottom radius of belts
- α groove or rib angle

- The actual configuration of the tip profile can lie anywhere between the maximum and minimum indicated. Any configuration shall have a transitional radius $r_{\rm t}$ corresponding to a 30° minimum arc tangent to the groove sidewall.
- b The configuration of the groove bottom below $r_{\rm h}$ is optional.
- c See <u>Figure 2</u>.

NOTE View W represents the pulley tip profile and view X represents the pulley groove bottom.

Figure 1 — Cross-section of pulley grooves

Key

 $d_{\rm B}$ checking ball or rod diameter

 $d_{\rm e}$ effective diameter iTeh STANDARD PREVIEW

 $d_{\rm o}$ outer diameter

(standards.iteh.ai)

K diameter over balls or rods

x half the difference between the effective diameter and the diameter over balls or rods

https://standards.iteh.ai/catalog/standards/sist/db756eb7-e16c-42dc-b5bd-

Figure 2 423 Pulley diameters

Table 2 — Dimensions of pulley grooves

Parameter		Dimensions of pulley grooves Profile				
		РН	PJ	PK	PL	PM
Groove pitch, e a b		1,6 ± 0,03	2,34 ± 0,03	3,56 ± 0,05	4,7 ± 0,05	9,4 ± 0,08
Groove angle, α ^c	±0,5°	40°	40°	40°	40°	40°
$r_{\rm t}^{\rm d}$		0,25	0,30	0,35	0,55	0,90
		± 0,05	± 0,05	± 0,10	± 0,15	± 0,15
$r_{\rm b}$	maximum	0,3	0,4	0,5	0,4	0,75
Checking ball or rod diameter, $d_{\rm B}$	±0,01	1	1,5	2,5	3,5	7
2 <i>x</i>	nominal	0,11	0,23	0,99	2,36	4,53
2 <i>N</i> ^e	maximum	0,69	0,81	1,68	3,5	5,92
f	minimum	1,3	1,8	2,5	3,3	6,4

The tolerance on e applies to the distance between the axes of two consecutive grooves.

The sum of all deviations from the nominal value e for all grooves in any pulley shall not exceed ± 0.3 .

The centreline of the groove shall make an angle of $90^{\circ} \pm 0.5^{\circ}$ with the axis of the pulley.

The transitional radius of PH and PJ made from plastic shall be agreed between the parties concerned.

 $^{^{\}rm e}$ N is not related to the nominal diameter of the pulley but is measured from the actual ride position of the ball or rod in the pulley.

5.2 Minimum effective diameter

The minimum recommended effective diameter, d_e , for V-ribbed pulleys is given in <u>Table 3</u>.

Table 3 — Minimum effective diameter

Dimensions in millimetres

Profile		PH	PJ	PK	PL	PM
Effective diameter, $\frac{d}{e}$	min.	13	20	45	75	180

5.3 Tolerances on finished pulley

5.3.1 Checking conditions

Profile, diameter and run-out tolerances shall be checked on the finished pulley without surface coating.

5.3.2 Groove-to-groove diameter tolerances

The variation in diameters between the grooves in any one pulley shall be within the limits given in Table 4. This variation is obtained by comparing the diameter over balls or rods.

Table 4 — Groove-to-groove diameter variation

Dimensions in millimetres iTeh STANDARD PRFVIFW Effective diameter Number of grooves Maximum diameter variation standards.iteh.ai 0,1 $d_e \le 74$ Add 0,003 for each additional groove >6 da4≨1002d879/iso-pr $74 < d_e \le 500$ Add 0,005 for each additional groove >10 ≤10 0,25 $d_{e} > 500$ Add 0,01 for each additional groove >10

5.3.3 Radial circular run-out

Radial circular run-out shall be within the limits given in <u>Table 5</u>. Radial run-out is measured with a ball mounted under spring pressure to ensure contact with the groove as the pulley is rotated.

Table 5 — Radial circular run-out

Dimensions in millimetres

Effective diameter	Radial circular run-out				
d _e	FIM ^a maximum				
$d_{\rm e} \le 74$	0,13				
$74 < d_{\rm e} \le 250$	0,25				
4 > 250	0,25 + 0,000 4				
d _e > 250	per millimetre of effective diameter over 250				
^a Full indicator movement.					