TECHNICAL REPORT

ISO/TR 10300-32

First edition 2021-04

Calculation of load capacity of bevel gears —

Part 32:

ISO rating system for bevel and hypoid gears — Sample calculation for scuffing load capacity

(https://standards.iteh.ai)
Document Preview

ISO/TR 10300-32:2021

https://standards.iteh.ai/catalog/standards/iso/0981e49d-6bcd-4fda-a523-d8b2d5976f92/iso-tr-10300-32-2021

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 10300-32:2021

https://standards.iteh.ai/catalog/standards/iso/0981e49d-6bcd-4fda-a523-d8b2d5976f92/iso-tr-10300-32-202

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	tents	Page
Forew	vord	iv
Introd	luction	
1	Scope	1
2	Normative references	1
3	Terms and definitions	
4	Symbols	1
5	Application	2
Annex	A (informative) Sample 1: Rating of a spiral bevel gear pair without hypoid offset according to ISO/TS 10300-20	3
Annex	B (informative) Sample 2: Rating of a hypoid gear set according to ISO/TS 10300-20	44
Annex	C (informative) Sample 3: Rating of a hypoid gear set according to ISO/TS 10300-20	85
Annex	x D (informative) Sample 4: Rating of a hypoid gear set according to ISO/TS 10300-20	126
Biblio	graphy	167

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 10300-32:2021

https://standards.iteh.ai/catalog/standards/iso/0981e49d-6bcd-4fda-a523-d8b2d59/6f92/iso-tr-10300-32-202

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 60, *Gears*, Subcommittee SC 2, *Gear capacity calculation*.

A list of all parts in the ISO 10300 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The ISO 10300 series consists of International Standards, Technical Specifications (TS) and Technical Reports (TR) under the general title *Calculation of load capacity of bevel gears* (see <u>Table 1</u>).

- International Standards contain calculation methods that are based on widely accepted practices and have been validated.
- TS contain calculation methods that are still subject to further development.
- TR contain data that is informative, such as example calculations.

The procedures specified in ISO 10300 parts 1 to 19 cover fatigue analyses for gear rating. The procedures described in ISO 10300 parts 20 to 29 are predominantly related to the tribological behaviour of the lubricated flank surface contact. ISO 10300 parts 30 to 39 include example calculations. ISO 10300 series allows the addition of new parts under appropriate numbers to reflect knowledge gained in the future.

Requesting standardized calculations according to ISO 10300 without referring to specific parts requires the use of only those parts that are currently designated as International Standards (see Table 1 for listing). When requesting further calculations, the relevant part or parts of ISO 10300 need to be specified. Use of a Technical Specification as acceptance criteria for a specific design need to be agreed in advance between manufacturer and purchaser.

Table 1 — Parts of ISO 10300 series (status as of DATE OF PUBLICATION)

	Calculation of load capacity of bevel gears	International Standard	Technical Specification	Technical Report
	Part 1: Introduction and general influence factors ^a	X		
	Part 2: Calculation of surface durability (pitting)a	rexiew		
	Part 3: Calculation of tooth root strength ^a	X		
	Part 4 to 19: to be assigned ISO/TR 10300	-32:2021		
https://s	Part 20: Calculation of scuffing load capacity — Flash temperature method	bcd-4fda-a523-d8b	2d5976f 9 2/iso-tr-	10300-32-202]
	Part 21 to 29: to be assigned			
	Part 30: ISO rating system for bevel and hypoid gears — Sample calculations			X
	Part 32: ISO rating system for bevel and hypoid gears — Sample Calculations of scuffing load capacity			Х
	^a Under revision.			

This document and the other parts of ISO 10300 series provide a coherent system of procedures for the calculation of the load capacity of bevel and hypoid gears. ISO 10300 series is designed to facilitate the application of future knowledge and developments, also the exchange of information gained from experience.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 10300-32:2021

https://standards.iteh.ai/catalog/standards/iso/0981e49d-6bcd-4fda-a523-d8b2d5976f92/iso-tr-10300-32-2021

Calculation of load capacity of bevel gears —

Part 32:

ISO rating system for bevel and hypoid gears — Sample calculation for scuffing load capacity

WARNING — The user is cautioned that when the formulae are used for large average mean spiral angles, $(\beta_{m1} + \beta_{m2})/2 > 45^{\circ}$, for effective pressure angles, $\alpha_e > 30^{\circ}$ and/or for large face widths, b > 13 m_{mn}, the calculated results of the ISO 10300 series should be confirmed by experience.

1 Scope

This document provides calculation examples for different bevel gear designs regarding the scuffing load capacity according to ISO/TS 10300-20. The initial geometry data of the gear necessary for these calculations are in accordance with ISO 23509.

The term "bevel gear" is used to mean straight, helical (skew), spiral bevel, zerol and hypoid gear designs. Where this document pertains to one or more, but not all, the specific forms are identified.

The formulae in this document are based on virtual cylindrical gears and restricted to bevel gears whose virtual cylindrical gears have transverse contact ratios of $\varepsilon_{v\alpha}$ < 2. The results are valid within the range of the applied factors as specified in ISO 10300-1 (see ISO 6336-2). Additionally, the given relations are valid for bevel gears of which the sum of profile shift coefficients of pinion and wheel is zero (see ISO 23509).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/TS 10300-20, Calculation of load capacity of bevel gears — Part 20: Calculation of scuffing load capacity — Flash temperature method

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Symbols

For the purposes of this document, the symbols and units given in ISO/TS 10300-20 apply.

ISO/TR 10300-32:2021(E)

5 Application

This document provides four sample calculations:

- Sample 1 is a rating of a spiral bevel gear pair without hypoid offset according to ISO/TS 10300-20 (see <u>Annex A</u>);
- Sample 2 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex B);
- Sample 3 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex C);
- Sample 4 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex D).

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 10300-32:2021

https://standards.iteh.ai/catalog/standards/iso/0981e49d-6bcd-4fda-a523-d8b2d5976f92/iso-tr-10300-32-202

Annex A

(informative)

Sample 1: Rating of a spiral bevel gear pair without hypoid offset according to ISO/TS 10300-20

A.1 Initial data

Sample 1 is for a spiral bevel gear pair without hypoid offset which uses Method 0 according to ISO 23509 for calculation of gear geometry. The initial data for pitch cone parameters for this sample is shown in Table A.1 and the input data for tooth profile parameters in Table A.2.

Table A.1 — Initial data for pitch cone parameters

Symbol	Description	Method 0	Method 1	Method 2	Method 3
Σ	shaft angle	90°	X	X	X
а	hypoid offset	0 mm	X	X	X
<i>z</i> _{1,2}	number of teeth	14/39	X	X	X
d_{m2}	mean pitch diameter of wheel	tangaro	IS —	X	_
$d_{ m e2}$	outer pitch diameter of wheel	176,893 mm	X	_	X
b_2	wheel face width	25,4 mm	rel ^x al)	X	X
$\beta_{\mathrm{m}1}$	mean spiral angle of pinion	4 35°	X	_	_
$\beta_{\rm m2}$	mean spiral angle of wheel	35°	IC VV_	X	X
$r_{\rm c0}$	cutter radius	114,3 mm	X	X	X
stand <mark>Z</mark> 0ds.ite	number of blade groups (only face hobbing)	<u>0300-32:2021</u> 49d-6bc d -4fda-a	523-d 8 b2d59	76f92/ X so-tr-1	0300- X 2-2021

Table A.2 — Input data for tooth profile parameters

Data	type I	Data t	ype II
Symbol	Description	Symbol	Description
$lpha_{ m dD}$		20°	
$lpha_{ m dC}$		20°	
$f_{lpha m lim}$		0	
x _{hm1}	_	c_{ham}	0,247 37
$k_{ m hap}$	_	$k_{\rm d}$	2,000
$k_{ m hfp}$	_	$k_{\rm c}$	0,125
X _{smn}	_	k_{t}	0,091 5
		$W_{ m m2}$	_
j_{et2}		0,127 mm	
θ_{a2}		2,134 2°	
$\theta_{ m f2}$		6,493 4°	
$ ho_{a01}$		0,8 mm/0,8 mm	
$ ho_{ m a02}$		1,2 mm/1,2 mm	
s _{pr1D,C}		0 mm/0 mm	
s _{pr2D,C}		0 mm/0 mm	

<u>Table A.3</u> and <u>Table A.4</u> show geometry and operational data and text for explanation.

Table A.3 — Geometry data from calculation according to ISO 23509

Symbol	Description	Values	Symbol	Description	Value
d _{m1,2}	mean pitch diameter of pinion/wheel	54,918 mm/ 152,987 mm	$\zeta_{ m mp}$	offset angle on pitch plane	0°
$h_{am1,2}$	mean addendum of pinion/ wheel	4,836 mm/ 1,591 mm	$\zeta_{ m R}$	pinion offset angle on root plane	0°
h _{fm1,2}	mean dedendum of pinion/ wheel	2,394 mm/ 5,639 mm	R _{e1,2}	outer cone distance on pinion/wheel	93,973 mm
$lpha_{ m eD,C}$	effective pressure angle for drive side/coast side	20°/20°	R _{m1,2}	mean cone distance on pinion/wheel	81,273 mm
$\alpha_{\rm nD,C}$	generated pressure angle for drive side/coast side	20°/20°	$\delta_{1,2}$	pitch angle on pinion/wheel	19,747°/ 70,253°
$\alpha_{ m lim}$	limit pressure angle	0°	$\delta_{a1,2}$	face angle on pinion/wheel	26,240°/ 72,387°
$m_{ m mn}$	mean normal module	3,213 mm	$\delta_{\mathrm{f}1,2}$	root angle on pinion/wheel	17,613°/ 63,760°
$k_{ m hfp}$	basic crown gear deden- dum factor	1,25	<i>X</i> _{sm1,2}	thickness modification coefficient on pinion/ wheel	0,037/ -0,055
$\zeta_{ m m}$	pinion offset angle on axial plane	0,000° S	$m_{\rm et2}$	outer transverse module	4,536 mm
S _{mn1,2}	mean normal circular tooth thickness of pinion/wheel	6,465 mm/ 3,511 mm	dard	s.iteh.ai)	

Table A.4 — Operation parameters and additional considerations

Symbol	Description ISO/TR 1	300-32:2021 Value
Additiona	l data iteh.ai/catalog/standards/iso/0981e4	9d-6bcd-4fda-a523-d8b2d5976f92/iso-tr-10300
	wheel profile	generated
	roughing/finishing method	face milling (ground)
$b_{2\mathrm{eff}}$	effective face width on wheel	0,85· <i>b</i> ₂
	profile crowning	low
	verification of contact pattern	checked under light test load for each gear
m	ounting conditions of pinion and wheel	one member cantilever-mounted
Operation	n parameters	
T_1	pinion torque	300 Nm
n_1	pinion rotational speed	1 200 min ⁻¹
$K_{\mathbf{A}}$	application factor	1,1
	active flank	drive
	Run-In-Status	Run-In
Material	data for pinion and wheel (case hardened ste	eel)
Е	modulus of elasticity	210 000 N/mm ²
ν	Poisson's ratio	0,3
$\sigma_{ m Hlim}$	allowable stress number (contact)	1 500 N/mm ²
$\sigma_{ m Flim}$	nominal stress number (bending)	480 N/mm ²
$ ho_{ m M}$	densitiy of pinion / wheel	7 800 kg/m³ (according to ISO/TS 10300-20:2021, Table 5)

Table A.4 (continued)

Symbol	Description	Value
c_{M}	specific heat per unit mass of pinion / wheel	440 J/(kgK) (according to ISO/TS 10300-20:2021, Table 5)
$\lambda_{ m M}$	specific heat conductivity of pinion / wheel	45 W/(mK) (according to ISO/TS 10300-20:2021, Table 5)
	surface hardness	same for pinion and wheel
Quality p	arameters	
Rz	flank roughness on pinion/wheel	8 μm/8 μm
Ra	flank roughness on pinion/wheel	1,33 μm/1,33 μm
Rz	tooth root roughness on pinion/wheel	16 μm/16 μm
$f_{\sf pt}$	single pitch deviation on pinion/wheel	12 μm/26 μm
Lubricati	on parameters	
	oil type	ISO-VG-150
$ heta_{ m Oil}$	oil temperature	90 °C
$ heta_{ m Oil,Ref}$	reference oil temperature	90 °C
$e_{ m d}$	immersion depth	35,379 mm
$T_{1\mathrm{T}}$	pinion torque of achieved load stage (load stage 12)	534,5 Nm (A/8,3/90 according to ISO 14635-1)
ν_{40}	kinematic viscosity at temperature 40 °C	150 mm ² /s
ν_{100}	kinematic viscosity at temperature 100 °C	15 mm ² /s
$ ho_{15}$	density at temperature 15 °C	890 kg/m ³
	(IIttps://stanuar	us.itti.aij

A.2 Calculation of scuffing load capacity of Sample 1

The calculation results of the virtual cylindrical gear are listed in <u>Table A.5</u>, of stresses, velocities and coefficient of friction in <u>Table A.6</u>. Results of the calculation of the occurring contact temperature are shown in <u>Table A.7</u>, the permissible contact temperature in <u>Table A.8</u>. The results of the calculated safety factor can be found in <u>Table A.9</u>.

Table A.5 — Virtual cylindrical gear

	p		
Description	purFormula	Result	References to ISO/TS 10300-20:2021
Length of path of contact in transverse section	$g_{vlpha} = g_{va1} + g_{va2} = \frac{1}{2} \left[\left(\sqrt{d_{va1}^2 - d_{vb1}^2} - d_{v1} \sin \alpha_{vet} \right) + \left(\sqrt{d_{va2}^2 - d_{vb2}^2} - d_{v2} \sin \alpha_{vet} \right) \right]$	13,121 mm	Formula (3)
Point A on the transverse path of contact	$g_{\mathbf{Y}}^{-}(\mathbf{A}) = -g_{\mathbf{va}2}$	-3,851 mm	Formula (1)
Point E on the transverse path of contact	$g_{ m Y}^{ m e}({ m E})=g_{ m va}$	9,27 mm	Formula (2)
Contact point Y on the transverse path of contact	with $Y = (g_Y(A) + k_S g_{V\alpha}) + Y$. $(1-2k_S)g_{V\alpha}$ with $Y = 0i$; $i = 10$ with $Y = 0i$ with Y	-3,851 mm -2,539 mm -1,227 mm 0,085 mm 1,397 mm 2,709 mm 4,021 mm 5,334 mm 6,646 mm 7,958 mm	Formula (4)

a523-d8b2d5976f92/iso-tr-10300-32-2021

ttable A.5 (continued)

Formula Formula Formula Formula Formula (5) Formula (5) Formula (5) Formula (6) Formula (7) Formula (7) Formula (8) Formula (9) Formula (9) Formula (9) Formula (9) Formula (9) Formula (10)		nd		
$f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{vb}$ $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y) \cdot \cos \beta_{v\beta}$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y)$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y)$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y)$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y)$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / 2 + g_Y)$ $f_{m,Y} = (g_{v\alpha} - g_{v\alpha} / $	Description	ati. Formula	Result	References to ISO/TS 10300- 20:2021
$f_{m,y} = (g_{va2} - g_{va} / 2 + g_{Y}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{V}) \cdot \cos g_{vb}$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{vb})$ $f_{m,y} = (g_{va2} - g_{va} / 2 + g_{v$		th.a	-5,526 mm	
1.105 mm 1.		i/ca	-4,421 mm	
of the $f_{m,Y} = (g_{vaz} - g_{vaz} / 2 + g_Y) \cdot \cos \beta_{vb}$ in $f_{m,Y} = (g_{vaz} - g_{vaz} / 2 + g_Y) \cdot \cos \beta_{vb}$ in $f_{m,Y} = (g_{vaz} - g_{vaz} / 2 + g_Y) \cdot \cos \beta_{vb}$ in $f_{m,Y} = (g_{vaz} - g_{vaz} / 2 + g_Y) \cdot \cos \beta_{vb}$ in $f_{m,Y} = (g_{vaz} - g_{vaz} / 2 + g_Y) \cdot \cos \beta_{vb}$ in $f_{m,Y} = (g_{vaz} - g_{vaz} + g_{veff} \tan \gamma)$ in $f_{m,Y} = (g_{vaz} + g_{veff} \tan \gamma)$ in $f_{m,Y} = (g_{m,Y} + g_{m,P} + g_{m,P$		(talc	-3,316 mm	
and the standard function of the first of t		h1	-2,21 mm	
ontact $f_{m,Y} = (g_{va2} - g_{v\alpha} / 2 + g_Y) \cdot \cos g_{vb}$ 1,105 mm 1,105 mm 2,210 mm 3,316 mm 2,210 mm 3,316 mm 4,421 mm 5,526 mm 10,795 mm 10,795 mm 10,795 mm 16,947 mm 18,997 mm 18,997 mm 18,997 mm 121,59 mm 21,59 mm	;	tt]	-1,105 mm	
1,105 mm 2,210 mm 3,316 mm 4,421 mm 5,526 mm 10,795 mm 10,795 mm 10,795 mm 10,795 mm 10,795 mm 10,947 mm 11,896 mm 11,896 mm 11,897 mm 11,59 mm 11,59 mm 21,59 mm 21,59 mm 21,59 mm	middle contact	$f_{\rm m,Y} = (g_{ m va2} - g_{ m vlpha} / 2 + g_{ m Y}) \cdot \cos eta_{ m vb}$	0 mm	Formula (5)
2,210 mm 8,3316 mm 4,421 mm 3,316 mm 4,421 mm 5,526 mm 10,795 mm 10,795 mm 11,896 mm 16,947 mm 16,947 mm 16,947 mm 16,947 mm 16,947 mm 16,947 mm 17,8 mm 17,9 mm 21,59 mm 21,59 mm 21,59 mm		To:/	1,105 mm	
$ \begin{array}{c} 8.3316 \text{ mm} \\ 4.421 \text{ mm} \\ 5.526 \text{ mm} \\ 10.795 \text{ mm} \\ 10.795 \text{ mm} \\ 12.846 \text{ mm} \\ 14.896 \text{ mm} \\ 14.896 \text{ mm} \\ 16.947 \text{ mm} \\ 18.997 \text{ mm} \\ 21.59 \text{ mm} \\ 21.59$			2,210 mm	
$f_{Y} \cos \beta_{vb} + \tan \beta_{vb} \left(f_{Y} \sin \beta_{vb} + \frac{b_{v,eff}}{2} \tan \gamma + \tan \beta_{vb} \right)$ $x_{1,Y} = \frac{4,421 \text{mm}}{5,526 \text{mm}}$ $f_{Y} \cos \beta_{vb} + \tan \beta_{vb} \left(f_{Y} \sin \beta_{vb} + \frac{b_{v,eff}}{2} + \frac{1}{2} (g_{v\alpha} + b_{v,eff} \tan \gamma) \right)$ $x_{1,Y} = \frac{4,421 \text{mm}}{12,896 \text{mm}}$ $f_{Y} \cos \beta_{vb} + \tan \beta_{vb} \left(f_{Y} \sin \beta_{vb} + \frac{b_{v,eff}}{2} + \frac{1}{2} (g_{v\alpha} + b_{v,eff} \tan \gamma) \right)$ $x_{1,Y} = \frac{4,421 \text{mm}}{12,896 \text{mm}}$ x_{1			3,316 mm	
$f_{Y} \cos \beta_{vb} + \tan \beta_{vb} \left(f_{Y} \sin \beta_{vb} + \sum_{t=1}^{t} \frac{1}{2} \left(g_{v\alpha} + b_{v,eff} \tan \gamma \right) \right)$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$ $x_{1,Y} = \frac{f_{Y} \cos \beta_{vb} + \tan \beta_{vb}}{(2.59 \text{ mm})}$			4,421 mm	
$\frac{10,795 \text{ mm}}{12,846 \text{ mm}}$ $\frac{12,846 \text{ mm}}{14,896 \text{ mm}}$ $\frac{12,846 \text{ mm}}{14,896 \text{ mm}}$ $\frac{14,896 \text{ mm}}{16,947 \text{ mm}}$ $\frac{18,997 \text{ mm}}{21,048 \text{ mm}}$ $\frac{x_{1,y}}{x_{1,y}} = \frac{x_{1,y}}{x_{1,y}} = x_$			5,526 mm	
		n car P	10,795 mm	
$x_{1,y} = \frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\tan \gamma + \tan \beta_{vb}} \left(f_{y} \sin \beta_{vb} + \frac{b_{v,eff}}{2} \right) + \frac{1}{2} (g_{v\alpha} + b_{v,eff} \tan \gamma)}{\tan \gamma + \tan \beta_{vb}} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\tan \gamma + \tan \beta_{vb}} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\tan \gamma + \tan \beta_{vb}} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot \gamma} = 0$ $\frac{f_{y} \cos \beta_{vb} + \tan \beta_{vb}}{\cot$		la 'd 'r(2:2(4)	12,846 mm	
$f_{Y}\cos\beta_{\rm vb} + \tan\beta_{\rm vb} \left(f_{Y}\sin\beta_{\rm vb} + \frac{b_{\rm v,eff}}{2} \right) + \frac{1}{2} (g_{\nu\alpha} + b_{\rm v,eff} \tan\gamma) $ $x_{1,Y} = \frac{f_{Y}\cos\beta_{\rm vb} + \tan\beta_{\rm vb}}{\tan\gamma + \tan\beta_{\rm vb}} $ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$		S. ev	14,896 mm	
$f_{Y}\cos\beta_{\rm vb} + \tan\beta_{\rm vb} \left(f_{Y}\sin\beta_{\rm vb} + \frac{b_{\rm v,eff}}{2} \right) + \frac{1}{2} (g_{\nu\alpha} + b_{\rm v,eff} \tan\gamma) $ $x_{1,Y} = \frac{1}{(g_{\nu\alpha} + b_{\rm v,eff} \tan\gamma)}$ $\tan\gamma + \tan\beta_{\rm vb}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$		ds ite	16,947 mm	
$x_{1,Y} = \frac{f_Y \cos \rho_{vb} + \tan \rho_{vb}}{\tan \gamma + \tan \rho_{vb}} \left(f_Y \sin \rho_{vb} + \frac{1}{2} \right) + \frac{1}{2} \left(g_{v\alpha} + b_{v,eff} \tan \gamma \right) $ $x_{1,Y} = \frac{\tan \gamma + \tan \rho_{vb}}{\tan \gamma + \tan \rho_{vb}} \ge 0$ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$ $21,59 \text{ mm}$			18,997 mm	
tan γ + tan $\beta_{\rm vb}$ 1.05 (180-tr-1976)	the ends of the	$f_{\rm Y}\cos{eta_{ m vb}} + an{eta_{ m vb}} \left(f_{ m Y}\sin{eta_{ m vb}} + \frac{1}{2}\right) + \frac{1}{2}(g_{ m v\alpha} + b_{ m v,eff} an{\cal Y})$	21,048 mm	Formula (10)
21,59 mm 21,59 mm 21,59 mm 21,59 mm 21,59 mm 21,59 mm		$\tan \gamma + \tan \beta_{\rm vb}$	21,59 mm	
21,59 mm 21,59 mm 21,59 mm		9761	21,59 mm	
21,59 mm -t- 21,59 mm		92/	21,59 mm	
21,59 mm		iso-	21,59 mm	
		-tr-	21,59 mm	

.0300-32-202.

Table A.5 (continued)

Description	s://stand	Result	References to ISO/TS 10300-20:2021
	ard	0 mm	
	s.itt	0 mm	
	eh.a	0 mm	
	ii/ca	0 mm	
,	talify poweff	0 mm	
Coordinates of the ends of the	$f_{\rm Y}\cos ho_{\rm vb} + \tan ho_{\rm vb} \left(f_{\rm Y}\sin ho_{\rm vb} + \frac{1}{2} \right) - \frac{1}{2} (g_{\rm v\alpha} - b_{\rm v,eff} \tan ho_{\rm vb})$	0,542 mm	Formula (11)
	$^{\lambda}2, \gamma =$ tan $\gamma + \tan \beta_{\rm vb}$	2,593 mm	
	ps D(dard	4,643 mm	
		6,694 mm	
	'el'/s ull ISC Sso/0	8,744 mm	
		10,795 mm	
	St in en	-6,561 mm	
	a) d nt	-6,561 mm	
	n (an P	-6,561 mm	
	da rd rc 2:20 d-41	-6,561 mm	
	ev Scev)21 fda-	-6,561 mm	
Coordinates of the ends of the	$y_{1,Y} = -x_{1,Y} \tan \beta_{\rm vb} + f_{\rm Y} \cos \beta_{\rm vb} + \tan \beta_{\rm vb} \left(f_{\rm Y} \sin \beta_{\rm vb} + \frac{b_{\rm v,eff}}{2} \right)$	-6,561 mm	Formula (12)
	ehew 3-d	-5,595 mm	
	1. <i>a</i> 8b2	-4,283 mm	
	ai)	-2,971 mm	
	976	-1,659 mm	
	f92/	-0,347 mm	