Designation: E308 - 08 E308 - 12 # Standard Practice for Computing the Colors of Objects by Using the CIE System¹ This standard is issued under the fixed designation E308; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. #### INTRODUCTION Standard tables ((Tables Tables 1-4) 1-4) of color matching functions and illuminant spectral power distributions have since 1931 been defined by the CIE, but the CIE has eschewed the role of preparing tables of tristimulus weighting factors for the convenient calculation of tristimulus values. There have subsequently appeared numerous compilations of tristimulus weighting factors in the literature with disparity of data resulting from, for example, different selections of wavelength intervals and methods of truncating abbreviated wavelength ranges. In 1970, Foster et al. (1)² proposed conventions to standardize these two features, and Stearns (2) published a more complete set of tables. Stearns' work and later publications such as the 1985 revision of E308 have greatly reduced the substantial variations in methods for tristimulus computation that existed several decades ago. The disparities among earlier tables were largely caused by the introduction of computations based on 20-nm wavelength intervals. With the increasing precision of modern instruments, there is a likelihood of a need for tables for narrower wavelength intervals. Stearns' tables, based on a 10-nm interval, did not allow the derivation of consistent tables with wavelength intervals less than 10 nm. The 1-nm table must be designated the basic table if others with greater wavelength intervals are to have the same white point, and this was the reason for the 1985 revision of E308, resulting in tables that are included in the present revision as Tables 5. The 1994 revision was made in order to introduce to the user a method of reducing the dependence of the computed tristimulus values on the bandpass of the measuring instrument, using methods that are detailed in this practice. These changes, however, lead to tables (Tables 6 in this practice) that are substantially different from the Tables 5 that have been in use since 1985. There is accordingly a danger, if the new tables are introduced but not universally adopted, that there may again be, perhaps for several decades, a significant disparity among the tables of tristimulus weighting factors commonly used. It is highly desirable that this should be avoided. ## 1. Scope - 1.1 This practice provides the values and practical computation procedures needed to obtain CIE tristimulus values from spectral reflectance, transmittance, or radiance data for object-color specimens. - 1.2 Procedures and tables of standard values are given for computing from spectral measurements the CIE tristimulus values X, Y, Z, and chromaticity coordinates x, y for the CIE 1931 standard observer and X_{10} , Y_{10} , Z_{10} and x_{10} . y_{10} for the CIE 1964 supplementary standard observer. - 1.3 Standard values are included for the spectral power of six CIE standard illuminants and three CIE recommended fluorescent illuminants. - 1.4 Procedures are included for cases in which data are available only in more limited wavelength ranges than those recommended, or for a measurement interval wider than that recommended by the CIE. This practice is applicable to spectral data obtained in accordance with Practice E1164 with 1-, 5-, 10-, or 20-nm measurement interval. ¹ This practice is under the jurisdiction of ASTM Committee E12 on Color and Appearance and is the direct responsibility of Subcommittee E12.04 on Color and Appearance Analysis. Current edition approved Dec. 1, 2008 July 1, 2012. Published January 2009 December 2012. Originally approved in 1966. Last previous edition approved in 2006 2008 as E308 – 06. E308 – 08. DOI: 10.1520/E0308-08.10.1520/E0308-12. ² The boldface numbers in parentheses refer to the list of references at the end of this practice. TABLE 1 Spectral Tristimulus Values (Color-Matching Functions) x_y_z_of the CIE 1931 Standard (2°) Observer, at 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref (3)) | | to 780 nm (| See Note 2 and Ref (3)) | | |-----------------------|-----------------------------------|-------------------------------|--------------------------| | (nm) | x () | <i>y</i> () | z () | | 380 | 0.0014 | 0.0000 | 0.0065 | | 385 | 0.0022 | 0.0001 | 0.0105 | | 390 | 0.0042 | 0.0001 | 0.0201 | | 395 | 0.0076 | 0.0002 | 0.0362 | | 393 | 0.0076 | 0.0002 | 0.0302 | | 400 | 0.0143 | 0.0004 | 0.0679 | | 405 | 0.0232 | 0.0006 | 0.1102 | | 410 | 0.0435 | 0.0012 | 0.2074 | | 415 | 0.0776 | 0.0022 | 0.3713 | | | | | | | 420 | 0.1344 | 0.0040 | 0.6456 | | 425 | 0.2148 | 0.0073 | 1.0391 | | 430 | 0.2839 | 0.0116 | 1.3856 | | 435 | 0.3285 | 0.0168 | 1.6230 | | 440 | 0.3483 | 0.0230 | 1.7471 | | 445 | 0.3481 | 0.0298 | | | 445 | 0.3461 | 0.0298 | 1.7826 | | 450 | 0.3362 | 0.0380 | 1.7721 | | 455 | 0.3387 | 0.0480 | 1.7441 | | | | | | | 460 | 0.2908 | 0.0600 | 1.6692 | | 465 | 0.2511 | 0.0739 | 1.5281 | | 470 | 0.1954 | 0.0910 | 1.2876 | | 475 | 0.4404 | 0.4400 | 4.0440 | | 475 | 0.1421 | 0.1126 | 1.0419 | | 480 | 0.0956 | 0.1390 | 0.8130 | | 485 | 0.0580 | 0.1693 | 0.6162 | | 490 | 0.0320 | 0.2080 | 0.4652 | | 495 | 0.0147 | 0.2586 | 0.3533 | | | | ~ | | | 500 | 0.0049
0.0024 | 0.3230
0.4073 | 0.2720 | | 505 | 0.0024 | | 0.2123 | | 510 | 0.0093 | 0.5030 | 0.1582 | | 515 | 0.0291 | 0.6082 | 0.1117 | | 520 | 0.0633 | 0.0002 | 0.0782 | | | | | | | 525 | 0.1096 | 0.7932 | 0.0573 | | 530 | 0.1655 | 0.8620 | 0.0422 | | 535 | 0.2257 | 0.9149 | 0.0298 | | 540 | 0.2904 | 0.9540 | 0.0203 | | 545 | 0.3597 | 0.9803 | 0.0134 | | | | | | | 550 | 0.4334 | 0.9950 | 0.0087 | | https://s555dards.ite | eh.ai/catalog/stan0.5121s/sist/b8 | 7e61a6-cd2b-41.00005794-0a8eb | 1599dee/as 0.00573 (8-12 | | 560 | 0.5945 | 0.9950 | 0.0039 | | 565 | 0.6784 | 0.9786 | 0.0027 | | 570 | 0.7621 | 0.9520 | 0.0021 | | | | | | | 575 | 0.8425 | 0.9154 | 0.0018 | | 580 | 0.9163 | 0.8700 | 0.0017 | | 585 | 0.9786 | 0.8163 | 0.0014 | | 590 | 1.0263 | 0.7570 | 0.0011 | | 595 | 1.0567 | 0.6949 | 0.0010 | | | | | | | 600 | 1.0622 | 0.6310 | 0.0008 | | 605 | 1.0456 | 0.5668 | 0.0006 | | 610 | 1.0026 | 0.5030 | 0.0003 | | 615 | 0.9384 | 0.4412 | 0.0002 | | 620 | 0.8544 | 0.3810 | 0.0002 | | 020 | 0.0044 | 0.0010 | 0.0002 | | 625 | 0.7514 | 0.3210 | 0.0001 | | 630 | 0.6424 | 0.2650 | 0.0000 | | 635 | 0.5419 | 0.2170 | 0.0000 | | 640 | 0.3419 | 0.1750 | 0.0000 | | | | | | | 645 | 0.3608 | 0.1382 | 0.0000 | | 650 | 0.2025 | 0.1070 | 0.0000 | | | 0.2835 | | 0.0000 | | 655 | 0.2187 | 0.0816 | 0.0000 | | 660 | 0.1649 | 0.0610 | 0.0000 | | 665 | 0.1212 | 0.0446 | 0.0000 | | | 0.0874 | 0.0320 | 0.0000 | | 670 | | | | | 670 | | | | | 670
675 | 0.0636 | 0.0232 | 0.0000 | | 670 | | 0.0232
0.0170 | 0.0000
0.0000 | ## TABLE 1 Continued | (nm) | x () | у¯() | z ¯() | |------|---|-----------------|--------------| | 690 | 0.0227 | 0.0082 | 0.0000 | | 695 | 0.0158 | 0.0057 | 0.0000 | | 700 | 0.0114 | 0.0041 | 0.0000 | | 705 | 0.0081 | 0.0029 | 0.0000 | | 710 | 0.0058 | 0.0021 | 0.0000 | | 715 | 0.0041 | 0.0015 | 0.0000 | | 720 | 0.0029 | 0.0010 | 0.0000 | | 725 | 0.0020 | 0.0007 | 0.0000 | | 730 | 0.0014 | 0.0005 | 0.0000 | | 735 | 0.0010 | 0.0004 | 0.0000 | | 740 | 0.0007 | 0.0002 | 0.0000 | | 745 | 0.0005 | 0.0002 | 0.0000 | | 750 | 0.0003 | 0.0001 | 0.0000 | | 755 | 0.0002 | 0.0001 | 0.0000 | | 760 | 0.0002 | 0.0001 | 0.0000 | | 765 | 0.0001 | 0.0000 | 0.0000 | | 770 | 0.0001 | 0.0000 | 0.0000 | | 775 | 0.0001 | 0.0000 | 0.0000 | | 780 | 0.0000 | 0.0000 | 0.0000 | | | Summation at | 5 nm intervals: | | | | | 21.3714 | · | | | | | | | | $\sum y^{-}() = \sum z^{-}() = \sum y^{-}() = \sum y^{-}() = \sum y^{-}() = y^{-$ | 21.3711 | | - 1.5 Procedures are included for cases in which the spectral data are, and those in which they are not, corrected for bandpass dependence. For the uncorrected cases, it is assumed that the spectral bandpass of the instrument used to obtain the data was approximately equal to the measurement interval and was triangular in shape. These choices are believed to correspond to the most widely used industrial practice. - 1.6 This practice includes procedures for conversion of results to color spaces that are part of the CIE system, such as CIELAB and CIELUV (3). Equations for calculating color differences in these and other systems are given in Practice D2244. - 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. - 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. #### 2. Referenced Documents 2.1 ASTM Standards:³ D2244 Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates E284 Terminology of Appearance E313 Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates E1164 Practice for Obtaining Spectrometric Data for Object-Color Evaluation E2022 Practice for Calculation of Weighting Factors for Tristimulus Integration E2729 Practice for Rectification of Spectrophotometric Bandpass Differences 2.2 ANSI Standard: PH2.23 Lighting Conditions for Viewing Photographic Color Prints and Transparencies⁴ 2.3 CIE/ISO Standards: CIE Standard S 001/ISO IS 10526, Colorimetric Illuminants^{4,5} CIE Standard S 002/ISO IS 10527, Colorimetric Observers^{4,5} CIE Standard D 001, Colorimetric Illuminants and Observers (Disk)⁵ 2.4 ASTM Adjuncts: Computer disk containing Tables 5 and 6 ³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org. ⁵ Available from U.S. National Committee of the CIE (International Commission on Illumination), C/o Thomas M. Lemons, TLA-Lighting Consultants, Inc., 7 Pond St., Salem, MA 01970, http://www.cie-usnc.org. TABLE 2 Spectral Tristimulus Values (Color-Matching Functions) $x_{1070}^{-}y_{1070}^{-}z_{1070}^{-}z_{1070}^{-}$ of the CIE 1964 Supplementary Standard (10°) Observer, At 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref (3)) | (nm) | <i>X</i> ₁₀ () | y ₁₀ () | z ₁₀ () | |--------------------------------|----------------------------|---|-------------------------------------| | 380 | 0.0002 | 0.0000 | 0.0007 | | 385 | 0.0007 | 0.0001 | 0.0029 | | 390 | 0.0024 | 0.0003 | 0.0105 | | 395 | 0.0072 | 0.0008 | 0.0323 | | 333 | 0.0072 | 0.0000 | 0.0020 | | 400 | 0.0191 | 0.0020 | 0.0860 | | 405 | 0.0434 | 0.0045 | 0.1971 | | 410 | 0.0847 | 0.0088 | 0.3894 | | 415 | 0.1406 | 0.0145 | 0.6568 | | 420 | 0.2045 | 0.0214 | 0.9725 | | .23 | 0.2010 | 0.0211 | 0.0.20 | | 425 | 0.2647 | 0.0295 | 1.2825 | | 430 | 0.3147 | 0.0387 | 1.5535 | | 435 | 0.3577 | 0.0496 | 1.7985 | | 440 | 0.3837 | 0.0621 | 1.9673 | | 445 | 0.3867 | 0.0747 | 2.0273 | | | | | | | 450 | 0.3707 | 0.0895 | 1.9948 | | 455 | 0.3430 | 0.1063 | 1.9007 | | 460 | 0.3023 | 0.1282 | 1.7454 | | 465 | 0.2541 | 0.1528 | 1.5549 | | 470 | 0.1956 | 0.1852 | 1.3176 | | | | | | | 475 | 0.1323 | 0.2199 | 1.0302 | | 480 | 0.0805 | 0.2536 | 0.7721 | | 485 | 0.0411 | 0.2977 | 0.5701 | | 490 | 0.0162 | 0.3391 | 0.4153 | | 495 | 0.0051 | 0.3954 | 0.3024 | | | | | | | 500 | 0.0038 | 0.4608 | 0.2185 | | 505 | | | 0.1592 | | 510 | 0.0375 | 0.6067 | 0.1120 | | 515 | 0.0714 | 0.6857 | 0.0822 | | 520 | 0.1177 | 0.7618 | 0.0607 | | 505 | 0.4700 | 0.0000 | 0.0404 | | 525 | 0.1730 | 0.8233 | 0.0431 | | 530 | 0.2365 | 0.8752 | 0.0305 | | 535 | 0.3042 | 0.9238 | 0.0206 | | 540 | 0.3768 | 0.9620 | 0.0137 | | 545 | 0.4516 | 0.9822 | 0.0079 | | 550 | 0.5298 ASTN | <u>1 E308-12</u> 0.9918 | 0.0040 | | | | | 599dee/as 0.00113 () 8-12 | | https://s555.dards.itel
560 | n.ai/catalog/stan0.6161 | 61a6-cd2b-4 0.9991 ₅ 794-0a8eb1 0.9973 | 599dee/as 0.00113 () 8-12
0.0000 | | | | | | | 565 | 0.7938 | 0.9824 | 0.0000 | | 570 | 0.8787 | 0.9556 | 0.0000 | | 575 | 0.9512 | 0.9152 | 0.0000 | | 580 | 1.0142 | 0.8689 | 0.0000 | | 585 | 1.0743 | 0.8256 | 0.0000 | | 590 | 1.1185 | 0.7774 | 0.0000 | | 595 | 1.1343 | 0.7774 | 0.0000 | | 595 | 1.1040 | 0.7207 | 0.0000 | | 600 | 1.1240 | 0.6583 | 0.0000 | | 605 | 1.0891 | 0.5939 | 0.0000 | | 610 | 1.0305 | 0.5280 | 0.0000 | | 615 | 0.9507 | 0.5280 | 0.0000 | | 620 | 0.9507 | 0.4618 | 0.0000 | | 020 | 0.0303 | 0.0301 | 0.0000 | | 625 | 0.7549 | 0.3396 | 0.0000 | | 630 | 0.6475 | 0.2835 | 0.0000 | | 635 | 0.5351 | 0.2283 | 0.0000 | | 640 | 0.4316 | 0.1798 | 0.0000 | | 645 | 0.437 | 0.1402 | 0.0000 | | 040 | 0.0-01 | 0.1702 | 5.5500 | | | 0.2683 | 0.1076 | 0.0000 | | 650 | | 0.0812 | 0.0000 | | 650
655 | 0.2043 | | 0.0000 | | 655 | 0.2043
0.1526 | 0.0603 | | | 655
660 | 0.1526 | 0.0603
0.0441 | | | 655
660
665 | 0.1526
0.1122 | 0.0441 | 0.0000 | | 655
660 | 0.1526 | | | | 655
660
665 | 0.1526
0.1122 | 0.0441 | 0.0000 | | 655
660
665
670 | 0.1526
0.1122
0.0813 | 0.0441
0.0318 | 0.0000
0.0000 | TABLE 2 Continued | (nm) | <i>x</i> ₁₀ () | y ₁₀ () | z ₁₀ () | |------|---------------------------|---------------------------|---------------------------| | 690 | 0.0199 | 0.0077 | 0.0000 | | 695 | 0.0138 | 0.0054 | 0.0000 | | 700 | 0.0096 | 0.0037 | 0.0000 | | 705 | 0.0066 | 0.0026 | 0.0000 | | 710 | 0.0046 | 0.0018 | 0.0000 | | 715 | 0.0031 | 0.0012 | 0.0000 | | 720 | 0.0022 | 8000.0 | 0.0000 | | 725 | 0.0015 | 0.0006 | 0.0000 | | 730 | 0.0010 | 0.0004 | 0.0000 | | 735 | 0.0007 | 0.0003 | 0.0000 | | 740 | 0.0005 | 0.0002 | 0.0000 | | 745 | 0.0004 | 0.0001 | 0.0000 | | 750 | 0.0003 | 0.0001 | 0.0000 | | 755 | 0.0002 | 0.0001 | 0.0000 | | 760 | 0.0001 | 0.0000 | 0.0000 | | 765 | 0.0001 | 0.0000 | 0.0000 | | 770 | 0.0001 | 0.0000 | 0.0000 | | 775 | 0.0000 | 0.0000 | 0.0000 | | 780 | 0.0000 | 0.0000 | 0.0000 | | | Summation at | | | | | $\sum x_{10}() =$ | | | | | $\sum y_{10}() =$ | 23.3324 | | $\sum z_{10}^{-}() = 23.3343$ # 3. Terminology - 3.1 Definitions of terms in Terminology E284 are applicable to this practice (see also Ref (4)). - 3.2 Definitions: - 3.2.1 bandpass, adj—having to with a passband. - 3.2.2 bandwidth, n—the width of a passband at its half-peak transmittance. - 3.2.3 *chromaticity, n*—the color quality of a color stimulus definable by its chromaticity coordinates. - 3.2.4 *chromaticity coordinates, n*—the ratio of each of the tristimulus values of a psychophysical color (see section 3.2.7.11) to the sum of the tristimulus values. https://standards.iteh.ai/catalog/standards/sist/b87e61a6-cd2b-4b27-b794-0a8eb1599dee/astm-e308-12 # 3.2.4.1 Discussion— In the CIE 1931 standard colorimetric system, the chromaticity coordinates are: x = X/(X + Y + Z), y = Y/(X + Y + Z), z = Z/(X + Y + Z); in the CIE 1964 supplementary colorimetric system, the same equations apply with all symbols having the subscript 10 (see 3.2.7.). - 3.2.5 *CIE*, *n*—the abbreviation for the French title of the International Commission on Illumination, Commission Internationale de l'Éclairage. - 3.2.6 CIE 1931 (x, y) chromaticity diagram, n—chromaticity diagram for the CIE 1931 standard observer, in which the CIE 1931 chromaticity coordinates are plotted, with x as abscissa and y as ordinate. - 3.2.7 CIE 1964 (x_{10} , y_{10}) chromaticity diagram, n—chromaticity diagram for the CIE 1964 supplementary standard observer, in which the CIE 1964 chromaticity coordinates are plotted, with x_{10} as abscissa and y_{10} as ordinate. ## 3.2.7.1 Discussion— - Fig. 1 shows the CIE 1931 and 1964 chromaticity diagrams, including the locations of the spectrum locus and the connecting purple boundary. - 3.2.8 CIE 1976 (u', v') or (u' $_{10}$, v' $_{10}$) chromaticity diagram, n—chromaticity diagram in which the CIE 1976 L^* u * v* (CIELUV) chromaticity coordinates are plotted, with u' (or u' $_{10}$) as abscissa and v' (or v' $_{10}$) as ordinate. - 3.2.9 CIE 1931 standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli, X, Y, Z and the three CIE color—matching functions $x^-()$, $y^-()$, $z^-()$ adopted by the CIE in 1931. TABLE 3 Relative Spectral Power Distributions S(λ) of CIE Standard Illuminants $A, C, D_{5050}, D_{5555}, D_{6565}$, and D_{2575} at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref (3)) | | | | nm (See Note 2 and | , | | | |-----------------|---------------------|------------------|------------------------|------------------------|------------------------|------------------------| | (nm) | A
S() | C
S() | D ₅₀
S() | D ₅₅
S() | D ₆₅
S() | D ₇₅
S() | | | | | | | | | | 380 | 9.80 | 33.00 | 24.49 | 32.58 | 49.98 | 66.70 | | 385 | 10.90 | 39.92 | 27.18 | 35.34 | 52.31 | 68.33 | | 390 | 12.09 | 47.40 | 29.87 | 38.09 | 54.65 | 69.96 | | 395 | 13.35 | 55.17 | 39.59 | 49.52 | 68.70 | 85.95 | | 400 | 14.71 | 63.30 | 49.31 | 60.95 | 82.75 | 101.93 | | 405 | | 71.81 | | 64.75 | 87.12 | | | | 16.15 | | 52.91 | | | 106.91 | | 410 | 17.68 | 80.60 | 56.51 | 68.55 | 91.49 | 111.89 | | 415 | 19.29 | 89.53 | 58.27 | 70.07 | 92.46 | 112.35 | | 420 | 20.99 | 98.10 | 60.03 | 71.58 | 93.43 | 112.80 | | 425 | 22.79 | 105.80 | 58.93 | 69.75 | 90.06 | 107.94 | | | | | | | | | | 430 | 24.67 | 112.40 | 57.82 | 67.91 | 86.68 | 103.09 | | 435 | 26.64 | 117.75 | 66.32 | 76.76 | 95.77 | 112.14 | | 440 | 28.70 | 121.50 | 74.82 | 85.61 | 104.86 | 121.20 | | 445 | 30.85 | 123.45 | 81.04 | 91.80 | 110.94 | 127.10 | | 450 | 33.09 | 124.00 | 87.25 | 97.99 | 117.01 | 133.01 | | | | | | | | | | 455 | 35.41 | 123.60 | 88.93 | 99.23 | 117.41 | 132.68 | | 460 | 37.81 | 123.10 | 90.61 | 100.46 | 117.81 | 132.36 | | 465 | 40.30 | 123.30 | 90.99 | 100.19 | 116.34 | 129.84 | | 470 | 42.87 | 123.80 | 91.37 | 99.91 | 114.86 | 127.32 | | | | | | | | | | 475 | 45.52 | 124.09 | 93.24 | 101.33 | 115.39 | 127.06 | | 480 | 48.24 | 123.90 | 95.11 | 102.74 | 115.92 | 126.80 | | 485 | 51.04 | 122.92 | 93.54 | 100.41 | 112.37 | 122.29 | | 490 | 53.91 | 120.70 | 91.96 | 98.08 | 108.81 | 117.78 | | 495 | 56.85 | 116.90 | 93.84 | 99.38 | 109.08 | 117.19 | | | | | | | | | | 500 | 59.86 | 112.10 | 95.72 | 100.68 | 109.35 | 116.59 | | 505 | 62.93 | 106.98 | 96.17 | 100.69 | 108.58 | 115.15 | | 510 | 66.06 | 102.30 | 96.61 | 100.70 | 107.80 | 113.70 | | 515 | 69.25 | 98.81 | 96.87 | 100.34 | 106.30 | 111.18 | | | | | | | | | | 520 | 72.50 | 96.90 | 97.13 | 99.99 | 104.79 | 108.56 | | 525 | 75.79 | 96.78 | 99.61 | 102.10 | 106.24 | 109.55 | | 530 | 79.13 | 98.00 | 102.10 | 104.21 | 107.69 | 110.44 | | 535 | 82.52 | 99.94 | 101.43 | 103.16 | 106.05 | 108.37 | | | | | | | | | | 540 | 85.95 | 102.10 | 100.75 | 102.10 | 104.41 | 106.29 | | 545 | 89.41 | 103.95 | 101.54 | 102.53 | 104.23 | 105.60 | | 550 | 92.91 | 105.20 | 102.32 | 102.97 | 104.05 | 104.90 | | 555 | 96.44 | 105.67 | 101.16 | 101.48 | 102.02 | 102.45 | | 560 | 100.00 | 105.30 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | | | | | | 565 | 103.58 | 104.11 | 98.87 | 98.61 | 98.17 | 97.81 | | 570 | 107.18 | 102.30 | 97.74 | 97.22 | 96.33 | 95.62 | | 575 | 110.80 | 100.15 | A CTM 198.33 1 2 | 97.48 | 96.06 | 94.91 | | 580 | 114.44 | 97.80 | 98.92 | 97.75 | 95.79 | 94.21 | | httr585/standar | ds.iteh118.08 talog | standa95.43 sist | /h87e6196.21cd2h | _4h27_94.59_4_0a8 | Reh 1 5 92.24 e/astr | n-e30 90.60 | | | | | | | | | | 590 | 121.73 | 93.20 | 93.50 | 91.43 | 88.69 | 87.00 | | 595 | 125.39 | 91.22 | 95.59 | 92.93 | 89.35 | 87.11 | | 600 | 129.04 | 89.70 | 97.69 | 94.42 | 90.01 | 87.23 | | 605 | 132.70 | 88.83 | 98.48 | 94.78 | 89.80 | 86.68 | | | | | | | | | | 610 | 136.35 | 88.40 | 99.27 | 95.14 | 89.60 | 86.14 | | 615 | 139.99 | 88.19 | 99.16 | 94.68 | 88.65 | 84.86 | | 620 | 143.62 | 88.10 | 99.04 | 94.22 | 87.70 | 83.58 | | 625 | 147.24 | 88.06 | 97.38 | 92.33 | 85.49 | 81.16 | | 630 | 150.84 | 88.00 | 95.72 | 90.45 | 83.29 | 78.75 | | | | | | | | | | 635 | 154.42 | 87.86 | 97.29 | 91.39 | 83.49 | 78.59 | | 640 | 157.98 | 87.80 | 98.86 | 92.33 | 83.70 | 78.43 | | 645 | 161.52 | 87.99 | 97.26 | 90.59 | 81.86 | 76.61 | | 650 | 165.03 | 88.20 | 95.67 | 88.85 | 80.03 | 74.80 | | | | | | | | | | 655 | 168.51 | 88.20 | 96.93 | 89.59 | 80.12 | 74.56 | | 660 | 171.96 | 87.90 | 98.19 | 90.32 | 80.21 | 74.32 | | 665 | 175.38 | 87.22 | 100.60 | 92.13 | 81.25 | 74.87 | | 670 | 178.77 | 86.30 | 103.00 | 93.95 | 82.28 | 75.42 | | | | | | | | | | 675 | 182.12 | 85.30 | 101.07 | 91.95 | 80.28 | 73.50 | | 680 | 185.43 | 84.00 | 99.13 | 89.96 | 78.28 | 71.58 | | 685 | 188.70 | 82.21 | 93.26 | 84.82 | 74.00 | 67.71 | | 690 | 191.93 | 80.20 | 87.38 | 79.68 | 69.72 | 63.85 | | | | | | | | | | 695 | 195.12 | 78.24 | 89.49 | 81.26 | 70.67 | 64.46 | | 700 | 198.26 | 76.30 | 91.60 | 82.84 | 71.61 | 65.08 | | 705 | 201.36 | 74.36 | 92.25 | 83.84 | 72.98 | 66.57 | | 710 | 204.41 | 72.40 | 92.89 | 84.84 | 74.35 | 68.07 | | | | | | | | | | 715 | 207.41 | 70.40 | 84.87 | 77.54 | 67.98 | 62.26 | | 700 | 210.36 | 68.30 | 76.85 | 70.24 | 61.60 | 56.44 | | 720 | | | | 74.77 | 65.74 | 60.34 | | | 213.27 | 66.30 | 01.00 | | | | | 725 | 213.27
216.12 | 66.30
64.40 | 81.68
86.51 | | | | | 725
730 | 216.12 | 64.40 | 86.51 | 79.30 | 69.89 | 64.24 | | 725 | | | | | | | ## TABLE 3 Continued | | Α | С | D_{50} | D ₅₅ | D ₆₅ | D ₇₅ | |------|--------|-------|----------|-----------------|-----------------|-----------------| | (nm) | S() | S() | S() | S() | S() | S() | | 745 | 224.36 | 60.20 | 85.40 | 78.44 | 69.34 | 63.89 | | 750 | 227.00 | 59.20 | 78.23 | 71.88 | 63.59 | 58.63 | | 755 | 229.59 | 58.50 | 67.96 | 62.34 | 55.01 | 50.62 | | 760 | 232.12 | 58.10 | 57.69 | 52.79 | 46.42 | 42.62 | | 765 | 234.59 | 58.00 | 70.31 | 64.36 | 56.61 | 51.98 | | 770 | 237.01 | 58.20 | 82.92 | 75.93 | 66.81 | 61.35 | | 775 | 239.37 | 58.50 | 80.60 | 73.87 | 65.09 | 59.84 | | 780 | 241.68 | 59.10 | 78.27 | 71.82 | 63.38 | 58.32 | - 3.2.10 CIE 1964 supplementary standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli X_{10} , Y_{10} , Z_{10} and the three CIE color-matching functions $x_{10}^-()$, $y_{10}^-()$, $z_{10}^-()$ adopted by the CIE in 1964 (see Note 1). - Note 1—Users should be aware that the CIE 1964 (10°) supplementary system and standard observer assume no contribution or constant contribution of rods to vision. Under some circumstances, such as in viewing highly metameric pairs in very low light levels (where the rods are unsaturated), the amount of rod participation can vary between the members of the pair. This is not accounted for by any trichromatic system of colorimetry. The 10° system and observer should be used with caution in such circumstances. - 3.2.11 *color*, *n*—*of an object*, aspect of object appearance distinct from form, shape, size, position or gloss that depends upon the spectral composition of the incident light, the spectral reflectance, transmittance, or radiance of the object, and the spectral response of the observer, as well as the illuminating and viewing geometry. - 3.2.12 *color*, *n*—*psychophysical*₁, characteristics of a color stimulus (that is, light producing a visual sensation of color) denoted by a colorimetric specification with three values, such as tristimulus values. - 3.2.13 *color–matching functions*, *n*—the amounts, in any trichromatic system, of three reference color stimuli needed to match, by additive mixing, monochromatic components of an equal–energy spectrum. - 3.2.14 *fluorescent illuminant*, *n*—illuminant representing the spectral distribution of the radiation from a specified type of fluorescent lamp. - 3.2.15 *CIE recommended fluorescent illuminants*, *n*—a set of spectral power distributions of 12 types of fluorescent lamps, the most important of which are *F*2, representing a cool white fluorescent lamp with correlated color temperature 4200 K, *F*7, a broad-band (continuous-spectrum) daylight lamp (6500 K), and *F11*, a narrow-band (line-spectrum) white fluorescent lamp (4000 K). - 3.2.16 luminous, adj—weighted according to the spectral luminous efficiency function V() of the CIE. - 3.2.17 opponent-color scales, n—scales that denote one color by positive scale values, the neutral axis by zero value, and an approximately complementary color by negative scale values, common examples being scales that are positive in the red direction and negative in the green direction, and those that are positive in the yellow direction and negative in the blue direction. - 3.2.18 CIELAB color scales, n—CIE 1976 L^* , a^* , b^* opponent-color scales, in which a^* is positive in the red direction and negative in the green direction, and b^* is positive in the yellow direction and negative in the blue direction. - 3.2.19 CIELUV color scales, n—CIE 1976 L^* , u^* , v^* opponent-color scales, in which u^* is positive in the red direction and negative in the green direction, and v^* is positive in the yellow direction and negative in the blue direction. - 3.2.20 *passband*, *n*—a contiguous band of wavelengths in which at least a fraction of the incident light is selectively transmitted by a light-modulating device or medium. - 3.2.21 *spectral*, *adj*—*for radiometric quantities*, pertaining to monochromatic radiation at a specified wavelength or, by extension, to radiation within a narrow wavelength band about a specified wavelength. - 3.2.22 *standard illuminant*, *n*—a luminous flux, specified by its spectral distribution, meeting specifications adopted by a standardizing organization. - 3.2.23 *CIE standard illuminant A*, *n*—colorimetric illuminant, representing the full radiator at 2855.6 K, defined by the CIE in terms of a relative spectral power distribution. - 3.2.24 *CIE standard illuminant C, n*—colorimetric illuminant, representing daylight with a correlated color temperature of 6774 K, defined by the CIE in terms of a relative spectral power distribution. - 3.2.25 CIE standard illuminant D_{65} , n—colorimetric illuminant, representing daylight with a correlated color temperature of 6504 K, defined by the CIE in terms of a relative spectral power distribution. 3.2.25.1 Discussion— TABLE 4 Relative Spectral Power Distributions S(λ) of CIE Fluorescent Illuminants F2,F7_, and F11_at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref (3)) | | (See No | ote 2 and Ref (3)) | | |----------------------|------------------------------------|---------------------------------|-----------------------| | (nm) | F2 | F7 | F11 | | 380 | 1.18 | 2.56 | 0.91 | | 385 | 1.48 | 3.18 | 0.63 | | 390 | 1.84 | 3.84 | 0.46 | | 395 | 2.15 | 4.53 | 0.37 | | 400 | 3.44 | 6.15 | 1.29 | | 100 | 0.11 | 0.10 | 1.20 | | 405 | 15.69 | 19.37 | 12.68 | | 410 | 3.85 | 7.37 | 1.59 | | 415 | 3.74 | 7.05 | 1.79 | | 420 | 4.19 | 7.71 | 2.46 | | 425 | 4.62 | 8.41 | 3.38 | | | | | | | 430 | 5.06 | 9.15 | 4.49 | | 435 | 34.98 | 44.14 | 33.94 | | 440 | 11.81 | 17.52 | 12.13 | | 445 | 6.27 | 11.35 | 6.95 | | 450 | 6.63 | 12.00 | 7.19 | | | | | | | 455 | 6.93 | 12.58 | 7.12 | | 460 | 7.19 | 13.08 | 6.72 | | 465 | 7.40 | 13.45 | 6.13 | | 470 | 7.54 | 13.71 | 5.46 | | 475 | 7.62 | 13.88 | 4.79 | | 0 | 1.02 | .3.50 | 0 | | 480 | 7.65 | 13.95 | 5.66 | | 485 | 7.62 | 13.93 | 14.29 | | 490 | 7.62 | 13.82 | 14.96 | | 495 | 7.45 | 13.64 | 8.97 | | 500 | 7.28 | 13.43 | 4.72 | | 300 | 7.20 | | 4.72 | | 505 | 7 15 | tandal _{13.25} S | 2.33 | | 510 | 7.15
7.05 | 13.08 | 1.47 | | 515 | 7.03 | 12.00 | 1.10 | | 520 | httm716 / cto | n 0 2 r 0 \$12.78 e n . 2 1 | 0.89 | | 525 | (http ^{7.04} /sta | 12.93
12.78
12.60 | 0.83 | | 323 | 1.41 | | 0.03 | | 530 | 8.04 | Pre 12.44 PW 12.33 | 1.18 | | 535 | 8.04
8.88 | | 4.90 | | 540 | 10.01 | 12.33 | 39.59 | | 545 | 24.88 | 29.52 | 72.84 | | 550 | 40.04 | 47.05 | 32.61 | | 550 | 16.64 AST | M E308-12 17.05 | 32.01 | | https://555ndards.it | eh.ai/catalog/star14.59ds/sist/b87 | de61a6-cd2b-412.44-b794-0a8eb15 | 599dee/astr7.52308-12 | | https://555ndards.it | 16.16 | 12.58 | 2.83 | | 565 | 17.56 | 12.72 | 1.96 | | 570 | 18.62 | 12.72 | 1.67 | | 575 | 21.47 | 15.46 | 4.43 | | 575 | 21.47 | 15.40 | 4.43 | | 580 | 22.79 | 16.75 | 11.28 | | | | | | | 585 | 19.29 | 12.83 | 14.76 | | 590 | 18.66 | 12.67 | 12.73 | | 595 | 17.73 | 12.45 | 9.74 | | 600 | 16.54 | 12.19 | 7.33 | | 225 | 45.04 | 44.00 | 0.70 | | 605 | 15.21 | 11.89 | 9.72 | | 610 | 13.80 | 11.60 | 55.27 | | 615 | 12.36 | 11.35 | 42.58 | | 620 | 10.95 | 11.12 | 13.18 | | 625 | 9.65 | 10.95 | 13.16 | | | | | | | 630 | 8.40 | 10.76 | 12.26 | | 635 | 7.32 | 10.42 | 5.11 | | 640 | 6.31 | 10.11 | 2.07 | | 645 | 5.43 | 10.04 | 2.34 | | 650 | 4.68 | 10.02 | 3.58 | | | | | | | 655 | 4.02 | 10.11 | 3.01 | | 660 | 3.45 | 9.87 | 2.48 | | 665 | 2.96 | 8.65 | 2.14 | | 670 | 2.55 | 7.27 | 1.54 | | | 2.19 | 6.44 | 1.33 | | 675 | | | | | 675 | | | | | 675
680 | 1.89 | 5.83 | 1.46 | TABLE 4 Continued | (nm) | F2 | F7 | F11 | | | |------|------|------|------|--|--| | 690 | 1.53 | 5.04 | 2.00 | | | | 695 | 1.27 | 4.57 | 1.20 | | | | 700 | 1.10 | 4.12 | 1.35 | | | | 705 | 0.99 | 3.77 | 4.10 | | | | 710 | 0.88 | 3.46 | 5.58 | | | | 715 | 0.76 | 3.08 | 2.51 | | | | 720 | 0.68 | 2.73 | 0.57 | | | | 725 | 0.61 | 2.47 | 0.27 | | | | 730 | 0.56 | 2.25 | 0.23 | | | | 735 | 0.54 | 2.06 | 0.21 | | | | 740 | 0.51 | 1.90 | 0.24 | | | | 745 | 0.47 | 1.75 | 0.24 | | | | 750 | 0.47 | 1.62 | 0.20 | | | | 755 | 0.43 | 1.54 | 0.24 | | | | 760 | 0.46 | 1.45 | 0.32 | | | | 765 | 0.47 | 1.32 | 0.26 | | | | 770 | 0.40 | 1.17 | 0.16 | | | | 775 | 0.33 | 0.99 | 0.12 | | | | 780 | 0.27 | 0.81 | 0.09 | | | FIG. 1 The CIE 1931 x, y and 1964 x_{10} , y_{10} Chromaticity Diagrams Ref (5) (see Note 2) Other illuminants of importance defined by the CIE include the daylight illuminants D_{50} , D_{55} , and D_{75} . Illuminant D_{50} is used by the graphic arts industry for viewing colored transparencies and prints (see ANSI PH2.23). - 3.2.26 *standard observer*, *n*—an ideal observer having visual response described by the CIE color-matching functions (see CIE S 002 and Ref (3)). - 3.2.27 CIE 1931 standard observer, n—ideal colorimetric observer with color-matching functions $x^-()$, $y^-()$, $z^-()$ corresponding to a field of view subtending a 2° angle on the retina; commonly called the " 2° standard observer." - 3.2.28 CIE 1964 supplementary standard observer, n—ideal colorimetric observer with color-matching functions $x_{10}^-()$, $y_{10}^-()$, $z_{10}^-()$ corresponding to a field of view subtending a 10° angle on the retina; commonly called the "10° standard observer" (see Note 1). - 3.2.29 *tristimulus values*, n—see 3.2.9 and 3.2.10. - 3.2.30 tristimulus weighting factors, Sx^- , Sy^- , Sz^- , n—factors obtained from products of the spectral power S of an illuminant and the spectral color-matching functions x^- , y^- , z^- (or x^-_{10} , y^-_{10} , z^-_{10}) of an observer, usually tabulated at wavelength intervals of 10 or 20 nm, used to compute tristimulus values by multiplication by the spectral reflectance, transmittance, or radiance (or the corresponding factors) and summation. 3.2.30.1 Discussion— Proper account should be taken of the spectral bandpass of the measuring instrument. ## 4. Summary of Practice - 4.1 Selection of Parameters—The user of this practice must select values of the following parameters: - 4.1.1 *Observer*—Select either the CIE 1931 standard colorimetric observer (2° observer) or the CIE 1964 supplementary standard observer (10° observer), tabulated in this practice, CIE Standard S 002 or D 001, or Ref (3) (see 3.2.26 and Note 1). - 4.1.2 *Illuminant*—Select one of the CIE standard or recommended illuminants tabulated in this practice, CIE Standard S 001 or D 001, or Ref (3) (see 3.2.22). - 4.1.3 *Measurement Interval*—Select the measurement interval of the available spectral data. This practice provides for 1-, 5-, 10-, or 20-nm measurement intervals. For best practice the measurement interval should be selected to be as nearly as possible equal to the instrument bandpass. - 4.2 *Procedures*—The user should ascertain whether or not the spectral data have been corrected for bandpass dependence. The accuracy of tristimulus values is significantly improved by incorporating a correction for bandpass dependence into either the spectral data or the tables of tristimulus weighting factors (see 7.2). The procedures used depend on this and on the measurement interval. - 4.2.1 For data obtained at 1- or 5-nm measurement interval, the procedures of 7.2 should be followed. - 4.2.2 For data obtained at 10- or 20-nm measurement interval, the tables of tristimulus weighting factors contained in Tables 5 should be used with spectral data that have been corrected for bandpass dependence. The tables contained in Tables 6 should be used with spectral data that have not been so corrected; these tables include a provision that minimizes the error introduced by bandpass dependence when employing a triangular passband equal in half width to the measurement interval. - 4.2.3 A flow chart to ensure the use of proper combinations of data and tables is given in Fig. 2. The procedures of the practice are given in detail in 7.1. - 4.3 Calculations—CIE tristimulus values X, Y, Z or X_{10} , Y_{10} , Z_{10} are calculated by numerical summation of the products of tristimulus weighting factors for selected illuminants and observers with the reflectance factors (or transmittance or radiance factors) making up the spectral data. - 4.4 The tristimulus values so calculated may be further converted to coordinates in a more nearly uniform color space such as CIELAB or CIELUV. ### 5. Significance and Use - 5.1 The CIE colorimetric systems provide numerical specifications that are meant to indicate whether or not pairs of color stimuli match when viewed by a CIE standard observer. The CIE color systems are not intended to provide visually uniform scales of color difference or to describe visually perceived color appearances. - 5.2 This practice provides for the calculation of tristimulus values *X*, *Y*, *Z* and chromaticity coordinates *x*, *y* that can be used directly for psychophysical color stimulus specification or that can be transformed to nearly visually uniform color scales, such as CIELAB and CIELUV. Uniform color scales are preferred for research, production control, color-difference calculation, color specification, and setting color tolerances. The appearance of a material or an object is not completely specified by the numerical evaluation of its psychophysical color, because appearance can be influenced by other properties such as gloss or texture. # 6. Procedure - 6.1 Selecting Standard Observer—When colorimetric results are required that will be compared with previous results obtained for the CIE 1931 standard observer, use the values in Table 1 for that observer. When new results are being computed, consider using the values in Table 2 for the CIE 1964 supplementary standard observer, but see Note 1. - 6.1.1 Whenever correlation with visual observations using fields of angular subtense between about 1° and about 4° at the eye of the observer is desired, select the CIE 1931 standard colorimetric observer. - 6.1.2 Whenever correlation with visual observations using fields of angular subtense greater than 4° at the eye of the observer is desired, select the CIE 1964 supplementary standard colorimetric observer (but see Note 1). - 6.2 Selecting Standard or Recommended Illuminants —Select illuminants according to the type of light(s) under which objects will be viewed or for which their colors will be specified or evaluated. Note 1—References to Section 7. Calculations are Included. FIG. 2 Flow Chart for Selecting Methods and Tables for Tristimulus Integration - 6.2.1 When incandescent (tungsten) lamplight is involved, use values for CIE illuminant A. - 6.2.2 When daylight is involved, use values for CIE illuminant C or D_{65} . - 6.2.3 When fluorescent-lamp illumination is involved, use 4200 K standard cool white (F2) unless results are desired for 6500 K broad-band daylight (F7) or 4000 K narrow-band white (F11) fluorescent illumination. - 6.3 Selecting the Measurement Interval—For greater accuracy select the 5-nm measurement interval over the 10-nm interval where spectral data are available at 5-nm intervals. Likewise, select the 10-nm measurement interval over the 20-nm interval where spectral data are available at 10-nm intervals. If the 20-nm interval is selected, users should ensure themselves that the resulting accuracy is sufficient for the purpose for which the results are intended. For many industrial applications use of the 20-nm interval may be satisfactory. - 6.3.1 If the instrument used has a selectable measurement interval, select the interval that most nearly equals the bandwidth of the instrument throughout the spectrum. If the instrument has an adjustable bandwidth, adjust the bandwidth to be approximately equal to the measurement interval. - 6.3.2 The measurement interval should be commensurate with the bandwidth. A much greater interval would undersample the spectrum, and a much smaller interval would not improve the accuracy of the computation. - 6.4 Other Miscellaneous Conditions—While the above selections cover the majority of industrial practices, the possibility exists that other conditions could be encountered. Further, the deconvolution routine used to produce Tables 6 is not unique and uses approximating techniques that, while providing overall a good approximation to the true value, may not in a specific instance provide the best approximation. Therefore, other procedures than those included in this practice may be used provided that the results are consistent with those obtained by use of the procedures in the practice. ### 7. Calculations - 7.1 General Procedures—The general procedures for computing CIE tristimulus values are summarized as follows: - 7.1.1 *Procedures as Specified by the CIE*—The CIE procedures are specified in Ref (3) and summarized in Refs (5-9). The fundamental definition is in terms of integrals, $$X = k \int R(S(\bar{x})) \bar{x}(d) d$$ (1) $$Y = k \int R()S()\bar{y}()d$$ $$Z = k \int R()S()\bar{z}()d$$ where: where: R(t) = the reflectance, transmittance, or radiance factor (on a scale of zero to one for the perfect reflecting diffuser), S() = the relative spectral power of a CIE standard illuminant, and $x^{-}()$, $y^{-}()$, = the color-matching functions of one of the CIE standard observers. $z^{-}()$ The integration is carried out over the entire wavelength region in which the color-matching functions are defined, 360 to 830 nm. The normalizing factor k is defined as $$0 \text{ CUI}_{k=100/\int S()\bar{y}()d} \text{ review}$$ (2) The CIE notes that in all practical calculations of tristimulus values the integration is approximated by a summation, giving the equations as follows: https://standards.iteh.ai/catalog/standards/sist/b87e61a6-cd2b-4b27-b794-0a8eb1599dee/astm-e308-12 $$X = k \sum R()S()\bar{x}() \tag{3}$$ $$Y = k \sum R()S()\bar{y}()$$ $$Z = k \sum R()S()\bar{z}()$$ with: $$k = 100/\sum S()\bar{y}(). \tag{4}$$ $$k = 100/\sum S()\bar{y}() \tag{4}$$ 7.1.2 Procedure Using Tristimulus Weighting Factors—It is common industrial practice to carry out the summation to tristimulus values in two steps. In the first of these, a set of normalized tristimulus weighting factors W_x , W_y , W_z is calculated as follows: $$W_{x}() = k S() \bar{x}() \tag{5}$$ $$W_{v}() = kS()\bar{y}()$$ $$W_z() = kS()\bar{z}()$$ for = 360, ... 780 nm, (see Note 2), and where: