ISO/PRF 5618-1:2023(E)

ISO/TC 206/WG 7

Secretariat: JISC

Date: 2023-09-20

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for GaN crystal surface defects —

Part 1: Classification of defects

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 5618-1:2023(E)

© ISO 20XX2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: + 41 22 749 01 11

Fax: +41 22 749 09 47

Email E-mail: copyright@iso.org

Website: www.iso.org

Published in Switzerland

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u> ISO/PRF 5618-1</u>

https://standards.iteh.ai/catalog/standards/sist/7f5a03fc-5b75-4aad-82c6-844652c143d9/isoprf-5618-1

Contents

Forew	ord	į۲	
Introd	Introductionv		
1	Scope	. 1	
2	Normative references		
3	Terms and definitions	. 1	
4	Classification of defects	. :	
4.1	General	.3	
4.2	Description of the defect classes	.3	
4.2.1	Dislocation	.3	
4.2.2	Process-induced defects	. 7	
Biblio	Bibliography		

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 5618-1

https://standards.iteh.ai/catalog/standards/sist/7f5a03fc-5b75-4aad-82c6-844652c143d9/iso prf-5618-1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 206, Fine ceramics.

A list of all parts in the ISO 5618 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

GaN is a direct transition type of wide-bandgap semiconductor with superior physical properties, including a higher breakdown electric field, saturated electron drift velocity, and thermal conductivity, thanto Si. GaN is expected to be applied not only in light-emitting devices that have been in practical use for a long time, such as ultraviolet and blue laser diodes (LDs) and light-emitting diodes (LEDs), but also in power devices for high-efficiency power conversion. In particular, the characteristics of GaN-based power devices are applied in the fields of photovoltaics, automobiles, railways (electric motors and linear motors), communication base stations, and microwave power transmission.

The single-crystal GaN substrate or single-crystal GaN film is the base material used to produce devices. However, the surface of a single-crystal GaN substrate or single-crystal GaN film contains many dislocations that are introduced during crystal growth and defects that are introduced during wafer processing. The dislocations and/or defects cause a decrease in luminous efficiency for a light-emitting device and a degradation in performance and reliability for a power device. In particular, given the practical applications and market expansion of power devices that apply a high voltage and high current, it is important to supply single-crystal GaN substrates and single-crystal GaN films with low densities of dislocation and defects. Therefore, it is essential to have an international standard International Standard that defines and classifies the types of, and further determines the density of, dislocations and process-induced defects that exist on the surface as an index for assessing the quality of a single-crystal GaN substrate or single-crystal GaN film.

This document, part 1 of the ISO 5618 series, gives a classification of the dislocations and process-induced defects exposed on the surface of single-crystal GaN substrates and single-crystal GaN films. These single-crystal substrates and films are mainly used for light-emitting devices, such as LDs and LEDs, and power devices that perform high-voltage and high-current power conversion. ISO 5618-2½ provides a method of determining the etch pit density

ISO/PRF 5618-1 https://standards.iteh.ai/catalog/standards/sist/7f5a03fc-5b75-4aad-82c6-844652c143d9/iso-prf-5618-1

¹ Under preparation. Stage at the time of publication: ISO/DIS 5618-2:2023.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 5618-1

https://standards.iteh.ai/catalog/standards/sist/7f5a03fc-5b75-4aad-82c6-844652c143d9/iso-prf-5618-1

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for GaN crystal surface defects—____

Part 1:

Classification of defects

1 Scope

This document gives a classification of the dislocations and process-induced defects, from among the various surface defects, that occur on single-crystal gallium nitride (GaN) substrates or single-crystal GaN films.

It is applicable to the dislocations and process-induced defects exposed on the surface of the following types of GaN substrates or films:

- ——single-crystal GaN substrate;
- single-crystal GaN film formed by homoepitaxial growth on a single-crystal GaN substrate;
- single-crystal GaN film formed by heteroepitaxial growth on a single-crystal <u>aluminium oxide</u> (Al_2O_{3r}) , <u>silicon carbide</u> (SiC_7) or <u>silicon</u> (Si) substrate.

It is not applicable to defects exposed on the surface if the absolute value of the acute angle between the surface normal and the c-axis of GaN is $\geq \geq 8^{\circ}$.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ——ISO Online browsing platform: available at <a href="https://www.iso.org/obphttps://www.
- IEC Electropedia: available at http://www.electropedia.org/

3.1

gallium nitride

GaN

compound semiconductor crystal material composed of gallium and nitrogen having a wurtzite structure or a zincblende structure

3.2

silicon carbide

SiC

compound semiconductor crystal composed of silicon and carbon, which exhibits a large number of polytypes such as 3C, $4H_7$ and 6H

Note 1 to entry: A symbol like 4H gives the number of periodic stacking layers (2, 3, 4,...) and the crystal symmetry (H—=_hexagonal, C—=_cubic) of each polytype.

[SOURCE: IEC 63068-1:2019, 3.1]

ISO/PRF 5618-1:2023(E)

3.3

aluminium oxide

Al₂O₂

compound crystal material composed of aluminium oxide and oxygen with a corundum structure

3.4

silicon

Si

semiconductor crystal material composed of silicon with a diamond structure

3.5

substrate

material on which epitaxial layer is deposited

[SOURCE: IEC 63068-1:2019, 3.9, modified — "homoepitaxial" has been replaced by "epitaxial".]—

Definition revised.]

3.65

homoepitaxial growth

single-crystal growth that inherits information concerning the chemical composition, atomic arrangement, and crystal orientation onof homogeneous *substrates* (3.4)

3.76

heteroepitaxial growth STANDARD PRR

single-crystal growth that inherits information concerning the atomic arrangement and crystal orientation $\frac{1}{1}$ heterogeneous $\frac{1}{1}$

3.<mark>8</mark>7

Burgers vector

vector that represents the magnitude and direction of the lattice distortion of *dislocation* (3.10) in a crystal lattice

[SOURCE: ISO 15932:2013, 6.5.2]

3.<u>98</u>

c-axis

axis with 6-foldsixfold symmetry in a hexagonal crystal

3.109

basal plane

plane perpendicular to the crystallographic *c-axis* (3.8(3.9)) in a hexagonal crystal

[SOURCE: IEC 63068-1:2019, 3.13]

3.1110

dislocation

linear crystallographic defect in single-crystal material

[SOURCE: IEC 63068-1:2019, 3.22]

3.1211

edge dislocation

dislocation (3.10) with Burgers vector (3.7) perpendicular to the dislocation line

3.1312

screw dislocation

dislocation (3.10) with Burgers vector (3.7) parallel to the dislocation line

3.4413

mixed dislocation

dislocation (3.10) with Burgers vector (3.7) containing components that are both perpendicular and parallel to the dislocation line

3.1514

lattice constant

length of one of the basic vectors defining the unit cell

[SOURCE: IEC 60050:2014. IEV ref. 561-07-13, modified - Note 1 to entry is not included here]

3.16

etching

chemical treatment of the GaN crystal surface to detect *dislocations* (3.10)

3.1715

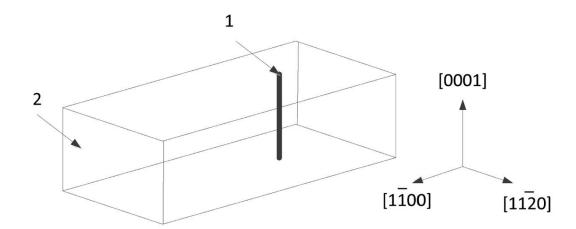
etchant

solution or melt used for etching (3.14)

4 Classification of defects ANDARD PREVIEW

4.1 General

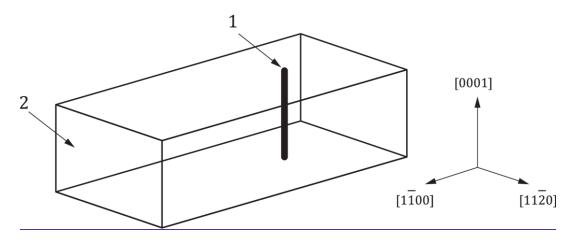
The dislocations and process-induced defects exposed on the surface of single-crystal GaN substrates and single-crystal GaN films shall be categorized into the classes of defects given in 4.24.2.


4.2 Description of the defect classes ds/sist/7f5a03fc-5b75-4aad-82c6-844652c143d9/iso-

4.2.1 Dislocation

4.2.1.1 Threading dislocation

The class of threading dislocation means a dislocation that reaches the surface from the inside of the single-crystal GaN substrate or the single-crystal GaN film and extends almost parallel to the c-axis. Schematic illustrations of threading dislocations are shown in Figure 1 Figure 1. Threading dislocations include tilted dislocations with an angle of up to 80° with respect to the c-axis. Threading dislocations include those where the dislocation lines are not straight but have a helical spring shape.


NOTE For the single-crystal GaN substrate, dislocations reach from the inside of the crystal to the surface and extend in the c-axis direction; they do not necessarily penetrate from the crystal surface to the back surface.

a) Schematic illustration of a threading dislocation in a GaN single-crystal substrate

b) Schematic illustration of a threading dislocation in a GaN single-crystal film

a) Schematic illustration of a threading dislocation in a GaN single-crystal substrate