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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria
needed for the different types of document should be noted. This document was drafted in
accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC
list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Alist of all parts in the ISO/IEC 14496 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.
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Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 2: Extending colour font functionality and other
updates

4.3

Add the following row to the table defining data types before the row that specifies Offset32:

Offset24 24-bit offset to a table, same as uint24, NULL offset = 0x000000

5.7.1
Replace the entire content of the subclause with the following:

The DSIG table contains the digital signature of the OFF font. Signature formats are widely documented
and rely on a key pair architecture. Software developers, or publishers posting material on the Internet,
create signatures using a private key. Operating systems or applications authenticate the signature
using a public key.

The W3C and major software and operating system developers have specified security standards that
describe signature formats, specify secure collections of web objects, and recommend authentication
architecture. OFF fonts with signatures will support these standards.

OFF fonts offer many security features:

— Operating systems and browsing applications can identify the source and integrity of font files
before using them,

— Font developers can specify embedding restrictions in OFF fonts, and these restrictions cannot be
altered in a font signed by the developer.

The enforcement of signatures is an administrative policy that may be supported by the host
environment in which fonts are used. Systems may restrict use of unsigned fonts, or may allow policy to
be controlled by a system administrator.

Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign
or GTE's Cybertrust, free or at a very low cost.

The DSIG table is organized as follows. The first portion of the table is the header.

DSIG Header
Type Name Description
uint32 version Version number of the DSIG table
(0x00000001)
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Type Name Description

uint16 numSignatures Number of signatures in the table
uint16 flags Shall be set to 0x0001
SignatureRecord |[signatureRecords[numSignatures]| |Array of signature records

The version of the DSIG table is expressed as a uint32, beginning at 0. The version of the DSIG table
currently used is version 1 (0x00000001).

Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font
(counter-signatures). If this bit is set to zero (0) the font may have a signature applied over the existing
digital signature(s). A party who wants to ensure that their signature is the last signature can set this
bit.

The DSIG header has an array of signature records that specify the format and offset of signature blocks.

SignatureRecord

Type Name Description

uint32 format Format of the signature

uint32 length Length of signature in bytes

Offset32 signatureBlockOffset Offset to the signature block from the beginning of the table

Signatures are contained in one or more signature blocks. Signature blocks may have various formats;
currently one format is defined. The format identifier specifies both the format of the signature block,
as well as the hashing algorithm used to create and authenticate the signature.

Signature Block Format 1

Type Name Description

uintl6 reservedl Reserved for future use; set to zero.

uint16 reserved?2 Reserved for future use; set to zero.

uint32 signatureLength Length (in bytes) of the PKCS#7 packet in the signature field.
uint8 signature[signatureLength] PKCS#7 packet

For more information about PKCS#7 signatures see [10].
For more information about counter-signatures, see [11].
Format 1: For whole fonts, with either TrueType outlines and/or CFF data
PKCS#7 or PKCS#9. The signed content digest is created as follows:
1) Ifthere is an existing DSIG table in the font:
a) Remove the DSIG table from font.
b) Remove the DSIG table entry from the Table Directory.
c) Adjust table offsets as necessary.
d) Recalculate the checksumAdjustment in the ‘head’ table.
2) Hash the revised font data using a secure one-way hash (such as MD5) to create the content digest.
3) Create the PKCS#7 signature block using the content digest.
4) Create a new DSIG table containing the signature block.

5) Add the DSIG table to the font, adjusting table offsets as necessary.
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6) Add a DSIG table entry to the Table Directory.
7) Recalculate the checksumAdjustment in the ‘head’ table.

Validation of a signature in a font is done by repeating steps 1 - 4 in an in-memory copy of the font
file. Note that changing the checksumAdjustment in the last step does not break the signature because
verification is done on an in-memory copy with these changes.

Prior to signing a font file, ensure that all the following attributes are true:
— The magic number in the ‘head’ table is correct.

— Given the numTables value in the Table Directory, the other values in the Table Directory are
consistent.

— The table records in the Table Directory are ordered alphabetically by the table tags, and there are
no duplicate tags.

— The offset of each table is a multiple of 4. (That is, tables are long word aligned.)
— The first actual table in the file comes immediately after the directory of tables.

— Ifthe tables are sorted by offset, then for all tables i (where index 0 means the table with the smallest
offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other words,
the tables do not overlap, and there are at most 3 bytes of padding between tables.

— The pad bytes between tables are all zeros.

— The offset of the last table in the file plus its length is not greater than the size of the file.
— The checksums of all tables are correct.

— The ‘head’ table's checksumAdjustment field is correct.

Signatures for Font Collections

The DSIG table for a Font Collection (TTC) shall be the last table in the TTC file. The offset to the table is
put in the TTCHeader (version 2). Signatures of TTC files are expected to be Format 1 signatures.

The signature of a TTC file applies to the entire file, not to the individual fonts contained within the
TTC. Signing the TTC file ensures that other contents are not added to the TTC.

Individual fonts included in a font collection should not be individually signed as the process of making
the TTC could invalidate the signature on the font.

When DSIG table is created for a collection file, the steps given above are used, with these revisions:

— In step 1: if there is an existing DSIG table referenced in a version 2.0 TTC header, the DSIG table is
removed, and the DSIG fields in the header is set to NULL. No recalculation of a checksumAdjustment
is required.

— Insteps 6 and 7: the DSIG table is added to the file, not to any individual font within the collection. A
version 2.0 TTC header is required, with the DSIG fields in the header set to reference the DSIG table.

— Step 8 is not applicable.

See the TTC Header description (subclause 4.6.3) for related information.
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5711
Replace the content of subclause 5.7.11 with the following:

The COLR table adds support for multi-colored glyphs in a manner that integrates with the rasterizers
of existing text engines and that is designed to be easy to support with current OpenType font files.

The COLR table defines color presentations for glyphs. The color presentation of a glyph is specified as a
graphic composition using other glyphs, such as a layered arrangement of glyphs, each with a different
color. The term “color glyph” is used informally to refer to such a graphic composition defined in the
COLR table; and the term “base glyph” is used to refer to a glyph for which a color glyph is provided.
Processing of the COLR table is done on glyph sequences after text layout processing is completed and
prior to final presentation of glyphs. Typically, a base glyph is a glyph that may occur in a sequence that
results from the text layout process.

For example, the Unicode character U+1F600 is the grinning face emoji. Suppose in an emoji font the
‘cmap’ table maps U+1F600 to glyph ID 718. Assuming no glyph substitutions, glyph ID 718 would be
considered the base glyph. Suppose the COLR table has data describing a color presentation for this
using a layered arrangement of other glyphs with different colors assigned: that description and its
presentation result would be considered the corresponding color glyph.

Two versions of the COLR table are defined.

Version 0 allows for a simple composition of colored elements: a linear sequence of glyphs that are
stacked vertically as layers in bottom-up z-order. Each layer combines a glyph outline from the ‘glyf’,
CFF or CFF2 table (referenced by glyph ID) with a solid color fill. These capabilities are sufficient to
define color glyphs such as those illustrated in Figure 5.6.

5 A

Figure 5.6 — Examples of the graphic capabilities of COLR version 0

Version 1 supports additional graphic capabilities. In addition to solid colors, gradient fills can be
used, as well as more complex fills using other graphic operations, including affine transformations
and various blending modes. Version 1 capabilities allow for color glyphs such as those illustrated in
Figure 5.7:

Figure 5.7 — Examples of the graphic capabilities of COLR version 1
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Version 1 also extends capabilities in variable fonts. A COLR version 0 table can be used in variable
fonts with glyph outlines being variable, but no other aspect of the color composition being variable. In
version 1, all of the new constructs for which it could be relevant have been designed to be variable; for
example, the placement of color stops in a gradient, or the alpha values applied to colors. The graphic
capabilities supported in version 0 and in version 1 are described in more detail below.

The COLR table is used in combination with the CPAL table (5.7.12): all color values are specified as
entries in color palettes defined in the CPAL table. If the COLR table is present in a font but no CPAL
table exists, then the COLR table is ignored.

5.7.11.1 Graphic compositions

The graphic compositions in a color glyph definition use a set of 2D graphic concepts and constructs:
— Shapes (or geometries)

— Fills (or shadings)

— Layering—a z-order—of elements

— Composition and blending modes—different ways that the content of a layer is combined with the
content of layers above or below it

— Affine transformations

For both version 0 and version 1, shapes are obtained from glyph outlines in the ‘glyf’, ‘CFF’ or CFF2
table, referenced by glyph ID. Colors used in fills are obtained from the CPAL table.

The simplest color glyphs use just a few of the concepts above: shapes, solid color fills, and layering.
This is the set of capabilities provided by version 0 of the COLR table. In version 0, a base glyph record
specifies the color glyph for a given base glyph as a sequence of layers. Each layer is specified in a layer
record and has a shape (a glyph ID) and a solid color fill (a CPAL palette entry). The filled shapes in the
layer stack are composed using only alpha blending.

Figure 5.8 illustrates the version 0 capabilities: three shapes are in a layered stack: a blue square in the
bottom layer, an opaque green circle in the next layer, and a red triangle with some transparency in the
top layer.

Key
1 layer O (bottom)
2 layer1

3 layer 2 (top)
Figure 5.8 — Basic graphic capabilities of COLR version 0

The basic concepts also apply to color glyphs defined using the version 1 formats: shapes have fills and
can be arranged in layers. But the additional formats of version 1 support much richer capabilities. In
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a version 1 color glyph, graphic constructs and capabilities are represented primarily in Paint tables,
which are linked together in a directed, acyclic graph. Several different Paint formats are defined, each
describing a particular type of graphic operation:

— A PaintColrLayers table provides a layering structure used for creating a color glyph from layered
elements. A PaintColrLayers table can be used at the root of the graph, providing a base layering
structure for the entire color glyph definition. A PaintColrLayers table can also be nested within the
graph, providing a set of layers to define some graphic sub-component within the color glyph.

— The PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient tables provide basic
fills, using color entries from the CPAL table.

— The PaintGlyph table provides glyph outlines as the basic shapes.

— The PaintTransform and PaintVarTransform tables are used to apply an affine transformation
matrix to a sub-graph of paint tables, and the graphic operations they represent. Several Paint
formats are also provided for specific transformation types: translate, scale, rotate, or skew, with
additional variants of these formats for variations and other options.

— The PaintComposite table supports alternate compositing and blending modes for two sub-graphs.

— The PaintColrGlyph table allows a color glyph definition, referenced by a base glyph ID, to be re-
used as a sub-graph within multiple color glyphs.

NOTE Some paint formats come in Paint* and PaintVar* pairs. In these cases, the latter format supports
variations in variable fonts, while the former provides a more compact representation for the same graphic
capability but without variation capability.

In a simple color glyph description, a PaintGlyph table might be linked to a PaintSolid table, for example,
representing a glyph outline filled using a basic solid color fill. But the PaintGlyph table could instead be
linked to a much more complex sub-graph of Paint tables, representing a shape that gets filled using the
more-complex set of operations described by the sub-graph of Paint tables.

The graphic capabilities are described in more detail in 5.7.11.1.1 - 5.7.11.1.9. The formats used for each
are specified in 5.7.11.2.

5.7.11.1.1 Colors and solid color fills

All colors are specified as a base zero index into CPAL (5.7.12) palette entries. A font can define alternate
palettes in its CPAL table; it is up to the application to determine which palette is used. A palette
entry index value of OXFFFF is a special case indicating that the text foreground color (defined by the
application) should be used, and shall not be treated as an actual index into the CPAL ColorRecord array.

The CPAL color data includes alpha information, as well as RGB values. In the COLR version 0 formats, a
color reference is made in a LayerRecord as a palette entry index alone. In the formats added for COLR
version 1, color references include a palette entry index and a separate alpha value within the COLR
structure for a solid color fill or gradient color stop (described below). Separation of alpha from palette
entries in version 1 allows use of transparency in a color glyph definition independent of the choice of
palette. The alpha value in the COLR structure is multiplied into the alpha value given in the CPAL color
entry.

Two color index record formats are defined: ColorIndex, and VarColorIndex. The latter can be used in
variable fonts to make the alpha value variable.

In version 1, a solid color fill is specified using a PaintVarSolid or PaintSolid table, with or without
variation support, respectively. See 5.7.11.2.6.2 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

6 © ISO/IEC 2023 - All rights reserved
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5.7.11.1.2 Gradients
5.7.11.1.2.1 General

COLR version 1 supports three types of gradients: linear gradients, radial gradients, and sweep
gradients. For each type, non-variable and variable formats are defined. Each type of gradient is
specified using a color line.

5.7.11.1.2.2 Color Lines

A color line is a function that maps real numbers to color values to define a one-dimensional gradation
of colors, to be used in the definition of linear, radial, or sweep gradients. A color line is defined as a set
of one or more color stops, each of which maps a particular real number to a specific color.

On its own, a color line has no positioning, orientation or size within a design grid. The definition of a
linear, radial, or sweep gradient will reference a color line and map it onto the design grid by specifying
positions in the design grid that correspond to the real values 0 and 1 in the color line. The specification
for linear, radial and sweep gradients also include rules for where to draw interpolated colors of the
color line, following from the placement of 0 and 1.

A color stop is defined by a real number, the stop offset, and a color. A color line shall have at least
one color stop. (Stop offsets are represented using F2D0OT14 values, therefore color stops can only be
specified within the range [-2, 2). See 5.7.11.2.5 for format details.) If only one color stop is specified,
that color is used for the entire color line; at least two color stops are needed to create color gradation.

Color gradation is defined over the interval from the color stop with the minimum offset, through the
successive color stops, to the color stop with the maximum offset. Between numerically-adjacent color
stops, color values are linearly interpolated. See Interpolation of Colors in 5.7.12 for requirements on
how colors are interpolated.

Color values outside the defined interval are determined by the color line’s extend mode, described
below. In this way, colors are defined for all stop offset values, from negative infinity to positive infinity.

For example, a gradient color line could be defined with two color stops at 0.2 and 1.5. Colors for offsets
between 0.2 and 1.5 are interpolated. Colors for offsets above 1.5 and below 0.2 are determined by the
color line’s extend mode.

If there are multiple color stops defined for the same stop offset, the first one is used for computing
color values on the color line below that stop offset, and the last one is used for computing color values
at or above that stop offset. All other color stops for that stop offset are ignored.

The color patterns outside the defined interval are determined by the color line’s extend mode. Three
extend modes are supported:

— Pad: outside the defined interval, the color of the closest color stop is used. Using a sequence of
letters as an analogy, given a sequence “ABC”, it is extended to “...AA ABC CC...".

— Repeat: The color line is repeated over repeated multiples of the defined interval. For example, if
color stops are specified for a defined interval of [0.2, 1.5], then the pattern is repeated above the
defined interval for intervals (1.5, 2.8], (2.8, 4.1], etc.; and also repeated below the defined interval
for intervals [-1.1, 0.2), [-2.4, -1.1), etc. In each repeated interval, the first color is that of the farthest
defined color stop. By analogy, given a sequence “ABC”, it is extended to “...ABC ABC ABC...".

— Reflect: The color line is repeated over repeated intervals, as for the repeat mode. However, in each
repeated interval, the ordering of color stops is the reverse of the adjacent interval. By analogy,
given a sequence “ABC”, it is extended to “...ABC CBA ABC CBA ABC...".

Figures 5.9-5.11 illustrate the different color line extend modes. The figures show the color line
extended over a limited interval, but the extension is unbounded in either direction.
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Key

1  pad with starting color
2 defined interval

3 pad with ending color

Figure 5.9 — Color gradation extended using pad mode
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1 repeated intervals
2 defined interval

3 repeated intervals

Figure 5.10 — Color gradation extended using repeat mode
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1 reflected intervals

Key

2  defined interval
3 reflected intervals

Figure 5.11 — Color gradation extended using reflect mode

NOTE1 The extend modes are the same as the spread Method attribute used for linear and radial gradients in
the Scalable Vector Graphics (SVG) 1.1 (2nd Edition) specification.

When combining a color line with the geometry of a particular gradient definition, one might want
to achieve a certain number of repetitions of the gradient pattern over a particular geometric range.
Assuming that geometric range will correspond to placement of stop offsets 0 and 1, the following steps
can be used:

— In order to get a certain number of repetitions of the gradient pattern (without reflection), divide 1
by the number of desired repetitions, use the result as the maximum stop offset for specified color
stops, and set the extend mode to repeat.

— In order to get a certain number of repetitions of the reflected gradient pattern, divide 1 by two
times the number of desired repetitions, use the result as the maximum stop offset for specified
color stops, and set the extend mode to reflect.

NOTE 2  Special considerations apply to color line extend modes for sweep gradients. See 5.7.11.1.2.5 for
details.

Color lines are specified using color line tables, which contain arrays of color stop records. Two color
line table and two color stop record formats are defined:

— ColorLine table and ColorStop record
— VarColorLine table and VarColorStop record

The VarColorLine and VarColorStop formats can be used in variable fonts and allow for stop offsets
and color alpha values to be variable. The ColorLine and ColorStop formats provide a more compact
representation when variation is not required. See 5.7.11.2.5 for format details.

5.7.11.1.2.3 Linear gradients

A linear gradient provides gradation of colors along a straight line. The gradient is defined by three
points, p,, p; and p,, plus a color line. The color line is positioned in the design grid with stop offset 0
aligned to p, and stop offset 1.0 aligned to p;. (The line passing through p, and p; will be referred to
as line p,p,.) Colors at each position on line pp, are interpolated using the color line. For each position
along line p,p;, the color at that position is projected on either side of the line.

© ISO/IEC 2023 - All rights reserved 9
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The additional point, p,, is used to rotate the gradient orientation in the space on either side of the line
pop;- The line passing through points p, and p, (line pyp,) determines the direction in which colors
are projected on either side of the color line. That is, for each position on line p,p;, the line that passes
through that position on line pyp; and that is parallel to line p,p, will have the color for that position on

line pyp;.

NOTE1 For convenience, point p, can be referred to as the rotation point, and the vector from p, to p, can be
referred to as the rotation vector. However, neither the magnitude of the vector nor the direction (from p, to p,,
versus from p, to p,) has significance.

If either point p; or p, is the same as point p, the gradient is ill-formed and shall not be rendered.

If line pyp, is parallel to line pyp; (or near-parallel for an implementation-determined definition), then
the gradient is ill-formed and shall not be rendered.

NOTE2 An implementation can derive a single vector, from p, to a point p;, by computing the orthogonal
projection of the vector from p, to p; onto a line perpendicular to line p,p, and passing through p, to obtain
point p;. The linear gradient defined using p, p; and p, as described above is functionally equivalent to a linear
gradient defined by aligning stop offset 0 to p, and aligning stop offset 1.0 to p5, with each color projecting on
either side of that line in a perpendicular direction. This specification uses three points, p,, p; and p,, as that
provides greater flexibility in controlling the placement and rotation of the gradient, as well as variations thereof.

Figures 5.12 to 5.14 illustrate linear gradients using the three different color line extend modes. Each
figure illustrates linear gradients with two different rotation vectors. In each case, three color stops
are specified: red at 0.0, yellow at 0.5, and blue at 1.0.

Figure 5.14 — Linear gradients with different rotations using the reflect extend mode
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NOTE3  When a linear gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the
same as if the gradient were defined using the transformed positions of points p,, p; and p,.

Linear gradients are specified using a PaintVarLinearGradient or PaintLinearGradient table, with or
without variation support, respectively. See 5.7.11.2.6.3 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.2.4 Radial gradients

A radial gradient provides gradation of colors along a cylinder defined by two circles. The gradient is
defined by circles with center ¢, and radius r,, and with center c; and radius ry, plus a color line. The
color line aligns with the two circles by associating stop offset 0 with the first circle (with center c)
and aligning stop offset 1.0 with the second circle (with center c;).

NOTE1 The term “radial gradient” is used in some contexts for more limited capabilities. In some contexts,
the type of gradient defined here is referred to as a “two point conical” gradient.

The drawing algorithm for radial gradients follows the HTML WHATWG Canvas specification for
createRadialGradient() [32], but adapted with alternate color line extend modes, as described in
5.7.11.1.2.2. Radial gradients shall be rendered with results that match the results produced by the
following steps.

With circle center points cy and ¢, defined as ¢ = (X, yo) and ¢; = (X1, y4):
1) Ifcy=cqandry=r; then paint nothing and return.

2) For real values of w: Let x(w) = (x;-Xg)w + Xy Let y(w) = (y1-yo)w + y Let r(w) = (r;-rp)w + ry Let the
color at w be the color at position w on the color line.

3) For all values of w where r(w) > 0, starting with the value of w nearest to positive infinity and
ending with the value of w nearest to negative infinity, draw the circular line with radius r(w)
centered at position (x(w), y(w)), with the color at w, but only painting on the parts of the bitmap
that have not yet been painted on in this step of the algorithm for earlier values of w.

The algorithm provides results in various cases as follows:
— When the circles are identical, then nothing is painted.
— When both radii are 0 (ry = r; = 0), then r(w) is always 0 and nothing is painted.

— If the centers of the circles are distinct, the radii of the circles are different, and neither circle is
entirely contained within the radius of the other circle, then the resulting shape resembles a cone
that is open to one side. The surface outside the cone is not painted (see Figures 5.15 to 5.17).

— If the centers of the circles are distinct but the radii are the same, and neither circle is contained
within the other, then the result will be a strip, similar to the flattened projection of a circular
cylinder. The surface outside the strip is not painted (see Figures 5.18 to 5.20).

— If the radii of the circles are different but one circle is entirely contained within the radius of the
other circle, the gradient will radiate in all directions from the inner circle, and the entire surface
will be painted (see Figures 5.24 to 5.26).

Figures 5.15 to 5.17 illustrate radial gradients using the three different color line extend modes. The
color line is defined with stops for the interval [0, 1]: red at 0.0, yellow at 0.5, and blue at 1.0. Note that
the circles that define the gradient are not stroked as part of the gradient itself. Stroked circles have
been overlaid in the figure to illustrate the color line and the region that is painted in relation to the two
circles.
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