INTERNATIONAL

Colorimetry -

Part 6:
CIEDE2000 colour-difference formula
Colorimétrie -
Partie 6: Formule de la différence de couleur CIEDE2000

COPYRIGHT PROTECTED DOCUMENT
(C) ISO/CIE 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester

ISO copyright office	CIE Central Bureau
CP 401 • Ch. de Blandonnet 8	Babenbergerstraße 9/9A•A-1010 Vienna
CH-1214 Vernier, Geneva	
Phone: +41227490111	Phone: +4317143187
	Fax: +41227490947
Email: copyright@iso.org	Email: ciecb@cie.co.at
Website: www.iso.org	Website: www.cie.co.at

Published in Switzerland

Contents

Foreword iv
Introduction v
1 Scope 1
2 Normative references 1
3 Terms and definitions 1
4 Symbols 1
5 Reference conditions 2
6 Calculation method 3
$7 \quad$ Parametric factors 5
Annex A (informative) Three-component micro-spaces 6
Bibliography 7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by the International Commission on Illumination (CIE) in cooperation with Technical Committee ISO/TC 274, Light and lighting, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 139, Paints and varnishes, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO/CIE 11664-6:2014), of which it constitutes a minor revision. The changes are as follows:

- normative references updated;
- previous Clause 3 split into Clauses 3 and 4;
- Clause 6: previous NOTE 1 changed to body text;
- minor editorial changes.

A list of all parts in the ISO/CIE 11664 series can be found on the ISO website and the CIE website.
Any feedback or questions on this document should be directed to the CIE Central Bureau or the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The three-dimensional colour space produced by plotting CIE tristimulus values (X, Y, Z) in rectangular coordinates is not visually uniform. Neither is the (x, y, Y) space nor the two-dimensional CIE (x, y) chromaticity diagram. Equal distances in these spaces and the respective diagram do not represent equally perceptible differences between colour stimuli. For this reason, the CIE has standardized two more-nearly uniform colour spaces (known as CIELAB and CIELUV), whose coordinates are non-linear functions of X, Y and Z. Numerical values representing approximately the relative magnitude of colour differences can be described by simple Euclidean distances in these spaces or by more sophisticated colour-difference formulae that improve the correlation with the relative perceived size of differences. The purpose of this document is to define one such formula, the CIEDE2000 formula. This document is based on CIE 142-2001.

The formula is an extension of the CIE $1976 L^{*} a^{*} b^{*}$ colour-difference formula (ISO/CIE 11664-4) with corrections for variation in colour-difference perception dependent on lightness, chroma, hue and chroma-hue interaction. Reference conditions define material and viewing environment characteristics to which the formula applies.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/CIE 11664-6:2022
hitps:/standards.iteh ai/catalog/standards/sist/2da3a 50-fb25-4db8-b4di-
37171 dda95ad iso-cie-11664-6-2022

Colorimetry -

Part 6:
 CIEDE2000 colour-difference formula

1 Scope

This document specifies the method of calculating colour differences according to the CIEDE2000 formula.

This document is applicable to input values of CIELAB L^{*}, a^{*}, b^{*} coordinates calculated according to ISO/CIE 11664-4. It can be used for the specification of the colour difference between two colour stimuli perceived as belonging to reflecting or transmitting objects. This includes displays if they are being used to simulate reflecting or transmitting objects and if the tristimulus values representing the stimuli are appropriately normalized.

This document does not apply to colour stimuli perceived as belonging to areas that appear to be emitting light as primary light sources or that appear to be specularly reflecting such light.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/CIE 11664-4, Colorimetry - Part 4: CIE 1976 L*a*b* colour space
CIE S 017, ILV: International Lighting Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in CIE S 017 apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

CIE maintains a terminology database for use in standardization at the following address:

- CIE e-ILV: available at https://cie.co.at/e-ilv

4 Symbols

$L^{*} \quad$ CIELAB lightness
$a^{*}, b^{*} \quad$ CIELAB a^{*}, b^{*} coordinates
$C_{\mathrm{ab}}^{*} \quad$ CIELAB chroma
$h_{\mathrm{ab}} \quad$ CIELAB hue angle

ISO/CIE 11664-6:2022(E)

$L^{\prime} \quad$ CIEDE2000 lightness
a^{\prime}, b^{\prime}
C^{\prime}
$\overline{C^{\prime}}$
h^{\prime}
$\overline{h^{\prime}}$
G
ΔL^{\prime}
ΔC^{\prime}
Δh^{\prime}
ΔH^{\prime}
ΔE_{00}
$S_{\mathrm{L}} \quad$ lightness weighting function
$S_{\mathrm{C}} \quad$ chroma weighting function
$S_{\mathrm{H}} \quad$ hue weighting function
$T \quad T$-function for hue weighting
$R_{\mathrm{T}} \quad$ rotation function
$\Delta \theta \quad$ hue dependence of rotation function
$R_{\mathrm{C}} \quad$ chroma dependence of rotation function
$k_{\mathrm{L}} \quad$ lightness parametric factor
$k_{\mathrm{C}} \quad$ chroma parametric factor
$k_{\mathrm{H}} \quad$ hue parametric factor

5 Reference conditions

The CIEDE2000 formula is intended to be applicable to objects viewed under the following reference conditions:

- Illumination: source simulating the relative spectral irradiance of CIE standard illuminant D65.
- Illuminance: 1000 lx .
- Observer: normal colour vision.
- Background field: uniform, neutral grey with $L^{*}=50$.
- Viewing mode: object.
- Sample size: sample pair subtending a visual angle greater than 4°.
- Sample separation: minimum sample separation achieved by placing the sample pair in direct edge contact.
- Sample colour-difference magnitude: 0 to 5 CIELAB units.
- Sample structure: homogeneous colour without visually apparent pattern or non-uniformity.

When conditions of use deviate appreciably from the reference conditions, parametric factors may be used to correct for the effects of material or experimental variables, as described in Clause 7.

NOTE CIE 230:2019 discusses and shows some application limitations of CIEDE2000 for CIELAB colour differences < 2 units.

6 Calculation method

All angular quantities in this document shall be evaluated in degrees.
CIELAB L^{*}, a^{*}, b^{*} and C_{ab}^{*} coordinates of the two samples shall be calculated according to ISO/CIE 11664-4.

Modified CIELAB coordinates shall be calculated according to Formulae (1) to (7).

$$
\begin{equation*}
L^{\prime}=L^{*} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a^{\prime}=(1+G) a^{*} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
b^{\prime}=b^{*} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
C^{\prime}=\left(a^{\prime 2}+b^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& h^{\prime}= \begin{cases}\arctan \left(\frac{b^{\prime}}{a^{\prime}}\right) & \text { if } a^{\prime}>0 \text { and } b^{\prime} \geq 0 \\
\arctan \left(\frac{b^{\prime}}{a^{\prime}}\right)+360^{\circ} & \text { if } a^{\prime}>0 \text { and } b^{\prime}<0 \\
\arctan \left(\frac{b^{\prime}}{a^{\prime}}\right)+180^{\circ} & \text { if } a^{\prime}<0 \\
90^{\circ} & \text { if } a^{\prime}=0 \text { and } b^{\prime}>0 \\
270^{\circ} & \text { if } a^{\prime}=0 \text { and } b^{\prime}<0\end{cases} \tag{5}\\
& h^{\prime}=0^{\circ} \text { if } a^{\prime}=0 \text { and } b^{\prime}=0 \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
G=0,5\left(1-\sqrt{\frac{\left(\overline{C_{\mathrm{ab}}^{*}}\right)^{7}}{\left(\overline{C_{\mathrm{ab}}^{*}}\right)^{7}+25^{7}}}\right) \tag{7}
\end{equation*}
$$

and $\overline{C_{\mathrm{ab}}^{*}}$ is the arithmetic mean of the C_{ab}^{*} values for the two samples of the colour-difference pair.
Formula (5) ensures that h^{\prime} is the angular position of the point a^{\prime}, b^{\prime} in the range from 0° to 360° measured from the positive a^{\prime} axis in the a^{\prime}, b^{\prime} plane. In cases where $a^{\prime}=b^{\prime}=0, h^{\prime}$ is indeterminate and shall be assigned a value of zero as indicated in Formula (6).

The $L^{\prime}, a^{\prime}, b^{\prime}, C^{\prime}$ and h^{\prime} values should be used only for the calculation of colour difference and should not be used as an alternative uniform colour space. When reporting CIELAB colour space coordinates, L^{*}, $a^{*}, b^{*}, C_{\mathrm{ab}}^{*}$ and h_{ab} values should be used.
Differences between two samples denoted by subscripts 0 (usually the reference) and 1 (usually the test) shall be calculated according to Formulae (8) to (14).

$$
\begin{align*}
& \Delta L^{\prime}=L_{1}^{\prime}-L_{0}^{\prime} \tag{8}\\
& \Delta C^{\prime}=C_{1}^{\prime}-C_{0}^{\prime} \tag{9}\\
& \Delta H^{\prime}=2\left(C_{0}^{\prime} C_{1}^{\prime}\right)^{1 / 2} \sin \left(\Delta h^{\prime} / 2\right) \tag{10}
\end{align*}
$$

where

$$
\begin{array}{ll}
\Delta h^{\prime}=0^{\circ} & \text { if } C_{0}^{\prime} C_{1}^{\prime}=0 \\
\Delta h^{\prime}=h_{1}^{\prime}-h_{0}^{\prime} & \text { if } C_{0}^{\prime} C_{1}^{\prime} \neq 0 \text { and }\left|h_{1}^{\prime}-h_{0}^{\prime}\right| \leq 180^{\circ} \\
\Delta h^{\prime}=h_{1}^{\prime}-h_{0}^{\prime}-360^{\circ} & \text { if } C_{0}^{\prime} C_{1}^{\prime} \neq 0 \text { and }\left(h_{1}^{\prime}-h_{0}^{\prime}\right)>180^{\circ} \\
\Delta h^{\prime}=h_{1}^{\prime}-h_{0}^{\prime}+360^{\circ} & \text { if } C_{0}^{\prime} C_{1}^{\prime} \neq 0 \text { and }\left(h_{1}^{\prime}-h_{0}^{\prime}\right)<-180^{\circ} \tag{14}
\end{array}
$$

NOTE 1 Formulae (11) to (14) avoid possible computational difficulties when h_{0}^{\prime} and h_{1}^{\prime} are in different quadrants or when one of the chromas is zero. They are based on Reference [$\underline{6}$].

NOTE 2 In information technology and other fields, the subscripts r (for reference) and t (for test) are sometimes used instead of 0 and 1 , respectively. Similarly, in industrial evaluation of small colour differences, s (for standard) and b (for batch) are sometimes used.

A three-term version of Formula (15) valid in a micro-space around the reference is given in Annex A.
The CIEDE2000 colour difference, ΔE_{00}, between the two samples shall be calculated according to Formula (15).

$$
\begin{equation*}
\Delta E_{00}=\left[\left(\frac{\Delta L^{\prime}}{k_{\mathrm{L}} S_{\mathrm{L}}}\right)^{2}+\left(\frac{\Delta C^{\prime}}{k_{\mathrm{C}} S_{\mathrm{C}}}\right)^{2}+\left(\frac{\Delta H^{\prime}}{k_{\mathrm{H}} S_{\mathrm{H}}}\right)^{2}+R_{\mathrm{T}}\left(\frac{\Delta C^{\prime}}{k_{\mathrm{C}} S_{\mathrm{C}}}\right)\left(\frac{\Delta H^{\prime}}{k_{\mathrm{H}} S_{\mathrm{H}}}\right)\right]^{1 / 2} \tag{15}
\end{equation*}
$$

where the symbols are defined according to Formulae (8) to (10) and Formulae (16) to (22):

$$
\begin{align*}
& S_{\mathrm{L}}=1+\frac{0,015\left(\overline{\bar{L}^{\prime}}-50\right)^{2}}{\sqrt{20+\left(\overline{\bar{L}^{\prime}}-50\right)^{2}}} \tag{16}\\
& S_{\mathrm{C}}=1+0,045 \overline{\bar{C}^{\prime}} \tag{17}\\
& S_{\mathrm{H}}=1+0,015 \overline{\bar{C}^{\prime}} T \tag{18}\\
& T=1-0,17 \cos \left(\overline{h^{\prime}}-30^{\circ}\right)+0,24 \cos \left(2 \overline{h^{\prime}}\right)+0,32 \cos \left(3 \overline{h^{\prime}}+6^{\circ}\right)-0,20 \cos \left(4 \overline{h^{\prime}}-63^{\circ}\right) \tag{19}\\
& R_{\mathrm{T}}=-\sin (2 \Delta \theta) R_{\mathrm{C}} \tag{20}
\end{align*}
$$

