

International
Standard

ISO 24173

Microbeam analysis — Guidelines for orientation measurement using electron backscatter diffraction

Analyse par microfaisceaux — Lignes directrices pour la mesure d'orientation par diffraction d'électrons rétrodiffusés

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 24173:2024](#)

<https://standards.iteh.ai/catalog/standards/iso/f06e4f85-d1e2-480d-ae1f-568a0d8e3b7c/iso-24173-2024>

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO 24173:2024](#)

<https://standards.iteh.ai/catalog/standards/iso/f06e4f85-d1e2-480d-ae1f-568a0d8e3b7c/iso-24173-2024>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Equipment for EBSD	6
5 Operating conditions	7
5.1 Specimen preparation	7
5.2 Specimen alignment	7
5.3 Common steps in collecting an EBSP	7
5.3.1 Setting the microscope operating conditions	7
5.3.2 Detector and working distances	8
5.3.3 Camera integration/exposure time	8
5.3.4 Binning	8
5.3.5 EBSP averaging	9
5.3.6 EBSP background correction/EBSP signal correction	9
5.3.7 Band detection	10
6 Calibrations required for indexing of EBSPs	11
7 Analytical procedure	14
7.1 Operating conditions	14
7.2 Equipment stability check	15
7.3 EBSD analysis	15
8 Measurement uncertainty	15
8.1 General	15
8.2 Uncertainty of crystal orientation measurement	15
8.3 Absolute orientation	15
8.4 Relative orientation	15
9 Reporting the results	16
Annex A (informative) Principle of EBSD	17
Annex B (informative) Specimen preparation for EBSD	18
Annex C (informative) Brief introduction to crystallography and EBSP indexing, and other information useful for EBSD	24
Bibliography	39

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 202, *Microbeam analysis*.

This second edition cancels and replaces the first edition (ISO 24173:2009) which has been technically revised.

The main changes are as follows:

- [Clause 3](#) has been updated;
- “in the working position” is changed to “in the detector position” [see [6.6 \(d\)](#)];
- subclause “7.1 Pre-test preparation” in the previous edition is omitted;
- “[Annex B](#) (normative)” is changed to “[Annex B](#) (informative)”;
- changes have been made to align this document with ISO rules.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Electron backscatter diffraction (EBSD) is a technique that is used with a scanning electron microscope (SEM), a combined SEM-FIB (focussed-ion beam) microscope or an electron probe microanalyser (EPMA) to measure and map local crystallography in crystalline specimens.^{[1],[2]}

Electron backscatter patterns (EBSPs) are formed when a stationary electron beam strikes the surface of a steeply inclined specimen, which is usually tilted at $\approx 70^\circ$ from normal to the electron beam. EBSPs are imaged via an EBSD detector, which comprises a scintillator (such as a phosphor screen or a YAG single crystal) and a low-light-level camera (normally a charge-coupled device, CCD). Patterns are occasionally imaged directly on photographic film.

By analysing the EBSPs, it is possible to measure the orientation of the crystal lattice and, in some cases, to also identify the phase of the small volume of crystal under the electron beam. EBSD is a surface diffraction effect where the signal arises from a depth of just a few tens of nanometres, so careful specimen preparation is essential for successful application of the technique.^[3]

In a conventional SEM with a tungsten filament, a spatial resolution of about 0,25 μm can be achieved; however, with a field-emission gun SEM (FEG-SEM), the resolution limit is 10 nm to 50 nm, although the value is strongly dependent on both the material being examined and the instrument operating parameters. A new method termed as transmission Kikuchi diffraction (TKD)^[4] or transmission EBSD (t-EBSD)^[5] in SEM has been proved to improve spatial resolutions better than 10 nm and is suited for routine EBSD characterization of both nano-structured and highly deformed samples.

Orientation measurements in test specimens can be carried out with an accuracy of $\approx 0,5^\circ$. By scanning the electron beam over a region of the specimen surface whilst simultaneously acquiring and analysing EBSPs, it is possible to produce maps that show the spatial variation of orientation, phase, EBSP quality and other related measures. These data can be used for quantitative microstructural analysis to measure, for example, the average grain size (and in some cases the size distribution), the crystallographic texture (distribution of orientations) or the amount of boundaries with special characteristics (e.g. twin boundaries). EBSD can provide three-dimensional microstructural characterization by combining with an accurate serial sectioning technique, such as focussed-ion beam milling.^[6]

It is strongly recommended that EBSD users should be well acquainted with both the principles of crystallography and the various methods for representing orientations (both of which are described in the existing literature in this field) in order to make best use of the EBSD technique and the data.^{[7],[8]}

Microbeam analysis — Guidelines for orientation measurement using electron backscatter diffraction

1 Scope

This document gives guidance on how to generate reliable and reproducible crystallographic orientation measurements using electron backscatter diffraction (EBSD). It addresses the requirements for specimen preparation, instrument configuration, instrument calibration and data acquisition.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 17025, *General requirements for the competence of testing and calibration laboratories*

ISO/IEC Guide 98-3, *Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)*

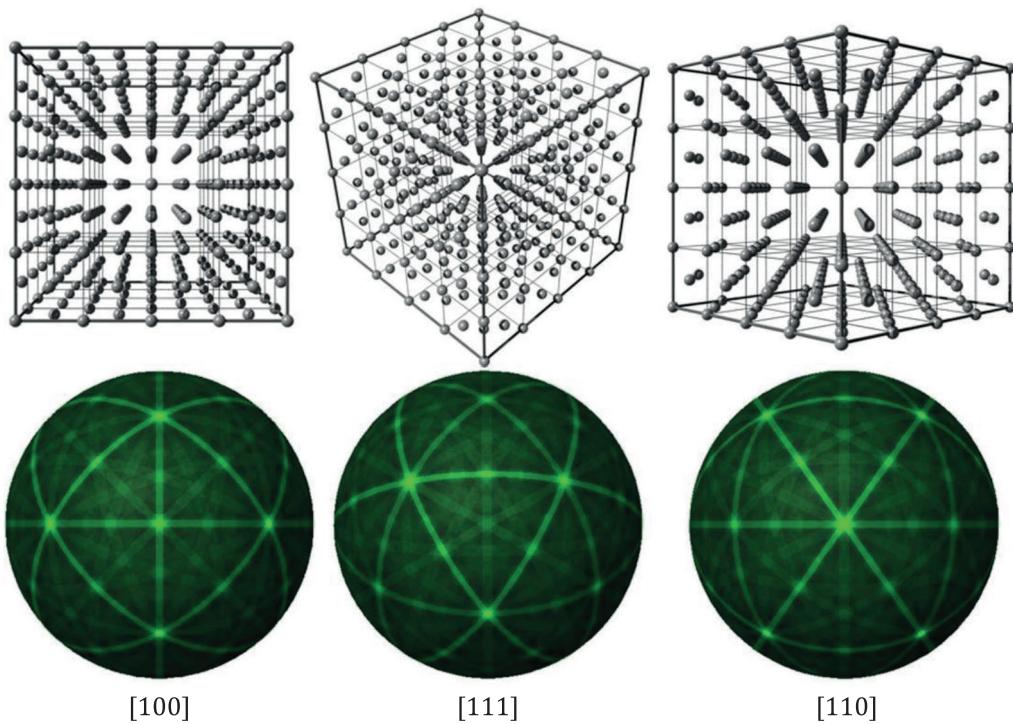
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/d-ae1f-568a0d8e3b7c/iso-24173-2024>

3.1 crystal


entity consisting of a regular, repeated arrangement of atoms in space and usually described by a space group, a crystal system, unit cell parameters (including the lengths and angles between the unit cell axes) and the positions of the atoms inside the unit cell^{[9], [10]}

Note 1 to entry: For example, an aluminium crystal can be represented by a cube (unit cell) of length 0,404 94 nm along each edge and with atoms at the corners and centres of the cube faces.

Note 2 to entry: Simulations of the atomic arrangement in a small ($4 \times 4 \times 4$ unit cells) aluminium crystal, as viewed along the [1 0 0], [1 1 1] and [1 1 0] directions, are shown in [Figure 1](#), together with the associated spherical Kikuchi patterns for each crystal orientation. The 4-fold, 3-fold and 2-fold crystal symmetries are easily seen, as are the mirror planes.

Note 3 to entry: For those unfamiliar with crystallography, it is recommended that a standard textbook be consulted (see for example References [9], [10] and [11]).

Note 4 to entry: [Annex C](#) contains a brief introduction to crystallography and a guide to the indexing of EBSPs for materials with cubic crystal symmetry.

Figure 1 — Simulations of a small aluminium crystal (top) as viewed along the [1 0 0], [1 1 1] and [1 1 0] directions, with their associated spherical Kikuchi patterns (bottom). The symmetry is clearly shown.

3.2

crystal plane

plane, usually denoted as $(h k l)$, representing the intersection of a plane with the a -, b - and c -axes of the unit cell at distances of $1/h$, $1/k$ and $1/l$, where h , k , and l are the minimum mutual integers

Note 1 to entry: The integers h , k , and l are usually referred to as the Miller indices of a crystal plane.

Note 2 to entry: See [Annex C](#) for more information.

3.3

crystal direction

direction, usually denoted as $[u v w]$, representing a vector direction in multiples of the basis vectors describing the a , b and c crystal axes

Note 1 to entry: See [Annex C](#) for more information.

3.4

crystallographic orientation

alignment of the crystal coordinate system (for example, [1 0 0], [0 1 0], [0 0 1] for a cubic crystal) in relation to the specimen coordinate system

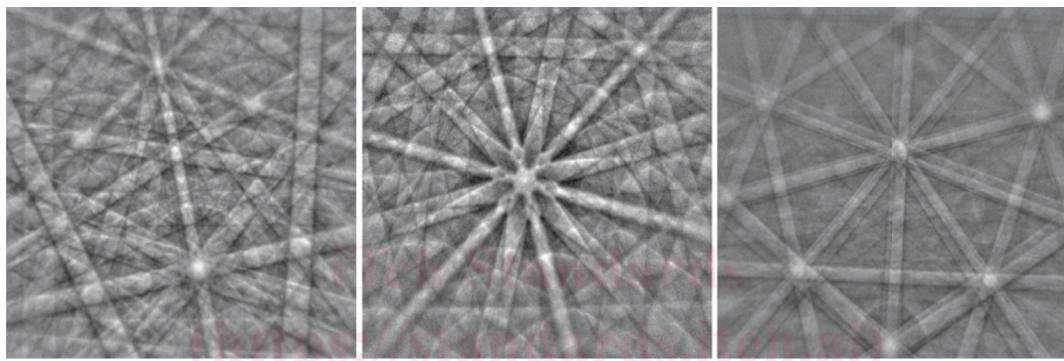
Note 1 to entry: The specimen coordinate system can be denoted as X, Y, Z. When EBSD is applied to the study of rolled materials, it is often denoted as RD, TD, ND [RD = reference (or rolling) direction, TD = transverse direction and ND = normal direction].

3.5

EBSD detector

detector used to capture the backscatter electron signal and convert it to a visible image on the display device (computer screen) via a video-camera, which is commonly a high-sensitivity charge-coupled device (CCD), or complementary metal-oxide-semiconductors (CMOS)

3.6 electron backscatter diffraction EBSD


diffraction process that arises between the backscattered electrons and the atomic planes of a highly tilted crystalline specimen when illuminated by a stationary incident electron beam

Note 1 to entry: Commonly used alternative terms for EBSD are “EBSP” (or more usually the “EBSP technique”), “BKD” (backscattered Kikuchi diffraction), “BKED” (backscattered Kikuchi electron diffraction) and “BKDP” (backscattered Kikuchi diffraction pattern).

Note 2 to entry: See [Annex A](#) for more information.

3.7 electron backscatter pattern EBSP

intersecting array of quasi-linear features, known as Kikuchi bands (see [Figure 2](#)), produced by electron backscatter diffraction and recorded using a suitable detector, for example observed on a phosphorescent screen or, less commonly, on photographic film

Figure 2 — Examples of EBSPs showing arrays of overlapping Kikuchi bands

3.8 pattern centre PC

point in the plane of the detector screen on a line normal to the plane of the screen and passing through the point where the electron beam strikes the specimen

3.9 Euler angles

set of three rotations for representing the orientation of a crystal relative to a set of specimen axes

Note 1 to entry: The Bunge convention (rotations about the Z, X' and Z" directions) is most commonly used for describing EBSD data. The Euler angles give the rotation needed to bring the specimen coordinate system into coincidence with the crystal coordinate system. It should be noted that there are equivalent sets of Euler angles, depending on crystal symmetry^[8].

3.10 Hough transform

mathematical technique of image processing which allows the automated detection of features of a particular shape within an image

Note 1 to entry: In EBSD, a linear Hough transform is used to identify the position and orientation of the Kikuchi bands in each *EBSP* (3.7), which enables the EBSP to be indexed. Each Kikuchi band is identified as a maximum in Hough space. The Hough transform is essentially a special case of the Radon transform. Generally, the Hough transform is for binary images, and the Radon transform is for grey-level images.^{[12],[13]} See [5.3.7](#) for more details.

3.11 indexing

process of identifying the crystallographic orientation corresponding to the features in a given EBSP, for example, determining which crystal planes correspond to the detected Kikuchi bands or which crystal directions match the Kikuchi band intersections (zone axes) and thereby determining the orientation (and phase)

3.12 orientation

alignment of a crystal axes relative to a set of specimen axes

Note 1 to entry: It is usually represented by Euler angles (ϕ_1, Φ, ϕ_2) or a 3×3 orientation matrix of direction cosines between the crystal and specimen axes and/or a Rodrigues-Frank vector.

3.13 orientation map

OM

map-like display of crystal orientation data derived from the sequential measurement of the crystal orientation at each point in a grid

Note 1 to entry: See Reference [14] for more information.

Note 2 to entry: Alternative terms are crystal orientation map (COM), automated crystal orientation map and orientation imaging microscopy map.

3.14 misorientation

difference in the orientation of two crystallites, usually expressed as an angle/axis pair

Note 1 to entry: Misorientation is the rotation required to bring one crystal grain into coincidence with another. It can be described by a rotation matrix, a set of Euler angles, an axis/angle pair or a Rodriguez vector. The axis/angle pair is most common, but the smallest angle description is generally used.

Note 2 to entry: The EBSD software calculates the crystal orientation of a particular point on the specimen surface based on the *EBSP* (3.7) acquired at that point. The software can then calculate the misorientation between any two chosen acquisition pixels (which can or cannot be neighbours in the orientation map) [15].

3.15 <https://standards.iteh.ai/catalog/standards/iso/f06e4f85-d1e2-480d-ae1f-568a0d8e3b7c/iso-24173-2024> transmission Kikuchi diffraction

TKD

SEM-based electron-transparent diffraction applies conventional EBSD hardware to a sample

Note 1 to entry: Commonly used alternative terms for TKD are "t-EBSD" [5].

Note 2 to entry: It has been proven to enable spatial resolutions better than 10 nm. This technique is ideal for routine EBSD characterisation of both nanostructured and highly deformed samples.

3.16 phase identification

crystallographic identification of an unknown phase in a specimen by comparing the features of the acquired *EBSP* (3.7) with those simulated or calculated from a set of possible candidate phases [16],[17],[18]

Note 1 to entry: This can be an automatic process in which the EBSD software searches a preselected set of crystal phase databases and determines the phase whose simulated *EBSP* (3.7) best matches the acquired EBSP. In this situation, the procedure is referred as phase discrimination. Alternatively, it can be a manual process in which features of the *EBSP* (3.7), such as its symmetry, band widths and HOLZ (higher-order Laue zone) lines are used in the identification procedure. In either case, information about the chemical composition obtained using energy-dispersive X-ray spectrometry (EDX) or wavelength-dispersive X-ray spectrometry (WDX) can be additionally used to reduce the list of possible phases, thereby speeding up the process and providing an increased level of confidence in the results.

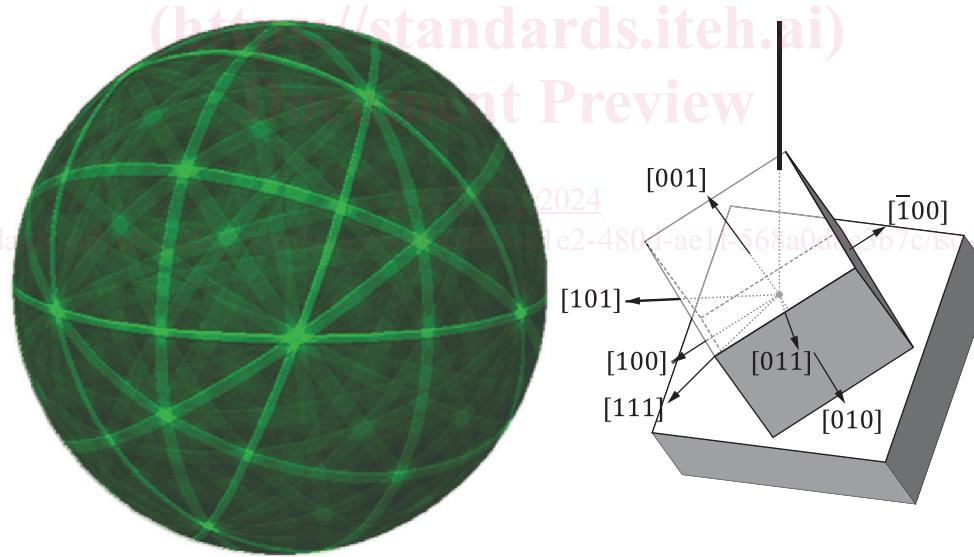
3.17**phosphor screen**

screen used to convert the electron signal to a visible light signal which can be detected with a low-light-level camera

Note 1 to entry: Most EBSD phosphors are made of a thin layer of phosphor particles, $\approx 4 \mu\text{m}$ to $10 \mu\text{m}$ in size, held together with a binder and having a final aluminium coating that both dissipates charge and acts as a mirror to increase the *EBSP* (3.7) signal but is thin enough to be relatively electron-transparent.

3.18**specimen-to-screen distance****SSD**

distance between the pattern centre in the detector screen and the point where the electron beam strikes the specimen


Note 1 to entry: If the specimen-to-screen distance decreases, then the *EBSP* (3.7) will appear to zoom out about the pattern centre, i.e. more Kikuchi bands will be seen.

3.19**spherical Kikuchi map****SKM**

representation of the *EBSP* (3.7) diffraction pattern projected on to the surface of a sphere, as shown in [Figure 3](#), the diffracted signal emanating spherically from a point source on the specimen surface

Note 1 to entry: Spherical Kikuchi maps are useful in that they avoid the distortions associated with the gnomonic projection of the EBSD signal onto the flat phosphor screen used to capture each *EBSP* (3.7).

Note 2 to entry: The spherical Kikuchi map is centred about the specimen and aligned with the crystallographic directions of the crystal being examined. As the crystal is rotated, the spherical Kikuchi map moves in synchrony.

NOTE This orientation is the standard silicon calibration orientation for a 70° tilted specimen; the incident electron beam direction is shown.

Figure 3 — Schematic diagram showing a silicon unit cell (right) with the main crystal directions labelled and, on the left, a spherical Kikuchi map of silicon at the same orientation

3.20**symmetry**

property an object has if it looks the same when rotated with a certain angle, translated or mirrored in a certain way

Note 1 to entry: For further information, see [Annex C](#).

3.21**zone axis**

point in an *EBSP* (3.7) where the centres of several Kikuchi bands intersect

Note 1 to entry: It corresponds to a low-index crystal direction in the *EBSP* (3.7).

3.22**Bravais lattice**

three-dimensional geometric arrangement of the atoms or molecules or ions making up a crystal

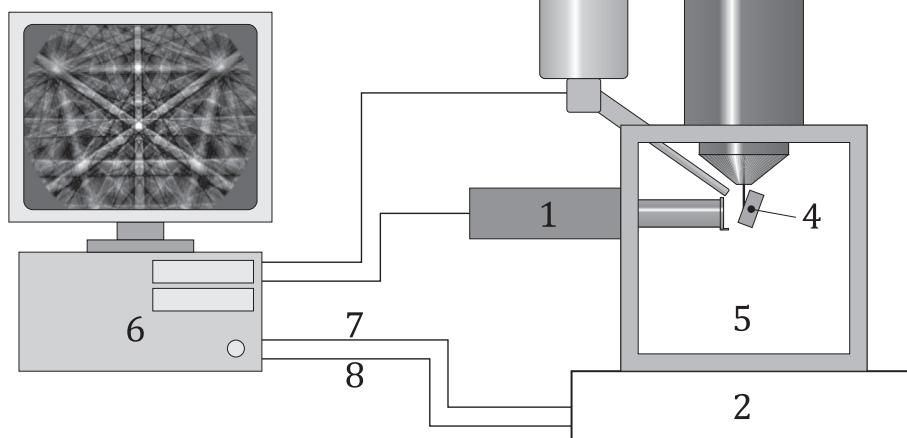
4 Equipment for EBSD

4.1 SEM, EPMA or FIB instrument, fitted with an electron column and including controls for beam position, stage, focus and magnification (see [Figure 4](#)).

4.2 Accessories, for detecting and indexing electron backscatter diffraction patterns, including:

4.2.1 Phosphorescent (“phosphor”) screen, which is fluoresced by electrons from the specimen to form the diffraction pattern.

4.2.2 Video camera, with low light sensitivity, for viewing the diffraction pattern produced on the screen.


4.2.3 Computer, with image processing, computer-aided pattern indexing, data storage and data processing, and SEM beam (or stage) control to allow mapping.

NOTE 1 Modern systems generally use charge-coupled devices (CCDs) or complementary metal-oxide-semiconductors (CMOS).

NOTE 2 Some systems incorporate detector(s) mounted around the phosphor screen to detect electrons scattered in the forward direction from the specimen; the detectors are usually silicon diodes, similar to those used in solid-state backscatter detectors. The images (orientation and atomic number contrast) give a rapid overview of the specimen microstructure [\[19\]](#).

[ISO 24173:2024](#)

<https://standards.iteh.ai/catalog/standards/iso/f06e4f85-d1e2-30d-aef5-568a0d3e3b7c/iso-24173-2024>

Key

1	EBSD instrument	5	chamber
2	SEM	6	EBSD computer
3	EDX (energy-dispersive spectrometer) (optional)	7	beam control
4	tilted specimen	8	SEM and stage control

Figure 4 — Diagram of an experimental EBSD arrangement