

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-МЕЖДУНАРОНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

Bois — Méthodes d'échantillonnage et conditions générales pour les essais physiques et mécaniques

Wood - Sampling methods and general requirements for physical and mechanical tests

iTeh STANDARD PREVIEW

Première édition - 1975-11-01

(standards.iteh.ai)

ISO 3129:1975 https://standards.iteh.ai/catalog/standards/sist/45b29de0-4dc5-4d81-913f-a9bc29ae4e30/iso-3129-1975

CDU 674.03.001.4 Réf. nº: ISO 3129-1975 (F)

Descripteurs : bois, échantillonnage, conditions d'essai, essai physique, essai mécanique.

AVANT-PROPOS

L'ISO (Organisation Internationale de Normalisation) est une fédération mondiale d'organismes nationaux de normalisation (Comités Membres ISO). L'élaboration de Normes Internationales est confiée aux Comités Techniques ISO. Chaque Comité Membre intéressé par une étude a le droit de faire partie du Comité Technique correspondant. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO, participent également aux travaux.

Les Projets de Normes Internationales adoptés par les Comités Techniques sont soumis aux Comités Membres pour approbation, avant leur acceptation comme Normes Internationales par le Conseil de l'ISO.

La Norme Internationale ISO 3129 a été établie par le Comité Technique VIII VIII ISO/TC 55, Bois sciés et grumes à sciages, et soumise aux Comités Membres en juin 1973.

(Standards.iteh.ai)

Elle a été approuvée par les Comités Membres des pays suivants :

ISO 3129:1975

Afrique du Sud, Rép. d' Inde://standards.iteh.ai/catalog/standards/sist/45b29de0-4dc5-4d81-913f-

Australie Irlande a9bc29 Suede iso-3129-1975
Belgique Italie Tchécoslovaquie

Bulgarie Japon Thaïlande
Canada Mexique Turquie
Chili Norvège U.R.S.S.
Égypte, Rép. arabe d' Pays-Bas Yougoslavie
Hongrie Pologne

Les Comités Membres des pays suivants ont désapprouvé le document pour des

Allemagne Autriche France Royaume-Uni

raisons techniques:

Bois — Méthodes d'échantillonnage et conditions générales pour les essais physiques et mécaniques

1 OBJET ET DOMAINE D'APPLICATION

1.1 La présente Norme Internationale spécifie les méthodes selective et systématique d'échantillonnage du bois, pour le conditionnement du matériau sélectionné et la préparation des éprouvettes. Elle spécifie en outre les conditions générales requises pour les essais physiques et mécaniques des éprouvettes nettes (sans défauts visibles) et de faibles dimensions.

1.2 La méthode «sélective» d'échantillonnage doit être employée dans les cas où les coefficients de variation des propriétés du bois dans un arbre et entre des arbres de PREV même essence sont connus, et où la sélection du matériau pour le prélèvement d'échantillons est possible dans un grand nombre d'arbres, de grumes et de pièces de bois scié.

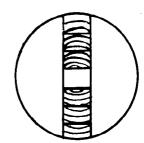


FIGURE 1 — Schéma général du débit d'une planche de cœur d'une grume

FIGURE 2 – Schéma du débit d'une planche de cœur d'une grume de diamètre égal ou inférieur à 180 mm admis dans l'échantillonnage systématique

2 ECHANTILLONNAGE

2.1 Sélection du matériau

Le matériau pour les essais physiques et mécaniques doit être sélectionné compte tenu des buts poursuivis (détermination de la qualité du bois d'un peuplement, d'un arbre échantillon, d'un lot de bois, d'une planche, etc.) et des spécifications appropriées pour la représentativité d'un échantillonnage et de sa valeur statistique.

Le matériau sélectionné doit être sous forme de grumes, de pièces de bois scié ou d'ébauches.

2.2 Débit du matériau

2.2.1 *Grumes*

Tirer d'une grume une planche de cœur (voir figure 1). Si la grume a une structure excentrique, la planche de cœur doit contenir le centre géométrique. La méthode systématique d'échantillonnage admet le débit des planches de cœur suivant deux diamètres perpendiculaires pour les grumes dont le diamètre est inférieur ou égal à 180 mm (voir figure 2).

L'épaisseur de la planche de cœur ne doit pas être inférieure à 60 mm. Il est admis de débiter des planches de cœur de 40 mm d'épaisseur pour les grumes dont le diamètre est inférieur ou égal à 180 mm. Dans ce cas, pour pouvoir préparer des éprouvettes ayant une section transversale de plus de 30 mm de côté, il convient de découper un segment transversal dont la longueur est supérieure ou égale à 100 mm avant le débit d'une planche de cœur.

2.2.2 Bois sciés

Dans la méthode sélective d'échantillonnage, on doit découper dans le bois scié parallèlement au fil une seule ébauche ou des ébauches en nombre déterminé, compte tenu des spécifications appropriées pour la représentativité de l'échantillonnage et sa valeur statistique. Leur épaisseur ne doit pas être inférieure à 35 mm.

Dans la méthode systématique d'échantillonnage, les planches de cœur, découpées conformément à 2.2.1 ou sélectionnées conformément à 2.1, doivent être débitées parallèlement au fil en ébauches de 35 mm d'épaisseur. Les ébauches contenant la moelle doivent être mises au rebut.

Les bois sciés qui ne contiennent pas de moelle doivent être débités en ébauches de telle manière qu'au moins une des faces de chaque ébauche soit radiale ou tangentielle.

En cas de nécessité, pour pouvoir préparer des éprouvettes ayant les dimensions transversales supérieures à 30 mm, on doit découper un segment de 100 mm de longueur dans le sens du fil, dans les bois sciés d'épaisseur égale ou supérieure à 60 mm avant leur débit en ébauches.

3 CONDITIONNEMENT DU MATÉRIAU

3.1 Pour l'obtention d'éprouvettes d'une humidité normale

Le bois, avant son débit en éprouvettes, doit être soigneusement séché (à une température inférieure à 60 °C) jusqu'au moment où il atteint une humidité voisine de l'équilibre qui sera obtenu sous les conditions d'humidité et de température prévues en 4.6.1. Il est souhaitable de couvrir les extrémités du matériau avec une substance protégeant de l'humidité pour prévenir la formation de l'al fentes.

3.2 Pour l'obtention d'éprouvettes avant aune chumidité g/stan 4.5 2 sipour 2 la méthode 18 sélective d'échantillonnage, le

Les ébauches, avant leur débit en éprouvettes, doivent être maintenues dans des conditions qui empêchent la dessiccation du bois.

4 PRÉPARATION DES ÉPROUVETTES

4.1 Forme et dimensions

Découper dans chaque ébauche, préparée conformément à 2.2.2, une éprouvette pour chaque type d'essai. La forme et les dimensions des éprouvettes doivent être celles spécifiées dans les Normes Internationales correspondantes.

4.2 Direction du fil

L'axe longitudinal de l'éprouvette doit être parallèle au fil du bois. Les couches annuelles sur les surfaces de bout des éprouvettes doivent être parallèles à deux faces opposées et perpendiculaires aux deux autres. Les faces adjacentes des éprouvettes doivent être perpendiculaires entre elles.

NOTE - Les fibres du bois, dans les éprouvettes pour l'essai à la traction perpendiculaire aux fibres, doivent être perpendiculaires à l'axe longitudinal.

4.3 Ecarts sur les dimensions nominales

Les écarts par rapport aux dimensions nominales de la partie calibrée d'une éprouvette ne doivent pas dépasser ± 0,5 mm. Toute valeur prise dans les limites de variation admissible, doit être observée sur toute l'étendue de l'éprouvette à \pm 0,1 mm près. Les dimensions des éprouvettes qui n'entrent pas dans les formules de calcul (par exemple, la longueur des éprouvettes pour l'essai à la flexion statique) doivent être observées à ± 1 mm près. Les calibrées des éprouvettes doivent surfaces soigneusement débitées.

4.4 Marguage

Chaque éprouvette doit être marquée. La marque doit permettre de repérer l'endroit où l'éprouvette a été découpée dans le matériau sélectionné. Les caractéristiques de la marque doivent être spécifiées dans les normes nationales.

4.5 Nombre

4.5.1 Le nombre d'éprouvettes doit être fixé, compte tenu du but poursuivi (détermination de la qualité du bois d'un peuplement, d'un arbre échantillon, d'un lot de bois scié, d'une planche, etc.), de la méthode d'échantillonnage utilisée et du degré de précision exigé de l'essai. Les valeurs des principales caractéristiques physiques et mécaniques du bois doivent être déterminées avec une précision de 5 % au niveau de confiance de 0,95.

ISO 3129:1975

égale ou supérieure au point de saturation des fibres a9bc29ac4e3hombré2minimal d'éprouvettes, n_{\min} , est donné par la formule

$$n_{\min} = mn = \frac{V^2 t^2}{p^2} \left[\frac{(n\sigma_b^2/\sigma_i^2) + 1}{(\sigma_b^2/\sigma_i^2) + 1} \right]$$

οù

m est le nombre de matériaux sélectionnés (grumes, bois sciés, planches, etc.);

n est le nombre moyen d'éprouvettes, découpées dans chaque pièce de matériau sélectionné;

V est le coefficient de variation de la propriété examinée, en pourcentage;

t est l'indice de confiance du résultat (moitié de la longueur de l'intervalle de confiance exprimé en multiples de l'écart-type);

p est l'indice de précision de l'essai, en pourcentage (rapport de l'écart-type de la moyenne arithmétique à la movenne arithmétique);

 σ_h^2 est la variance supposée d'une propriété du matériau sélectionné:

 σ_i^2 est la variance supposée d'une propriété dans les limites d'une pièce de matériau.

Les résultats doivent être arrondis au nombre entier le plus proche.

4.5.3 Pour la méthode systématique d'échantillonnage, le nombre minimal d'éprouvettes, n_{\min} , est donné par la formule approximative

$$n_{\min} = \frac{V^2 t^2}{p^2}$$

où V, t et p sont définis en 4.5.2.

Les résultats doivent être arrondis au nombre entier le plus proche.

4.5.4 Pour la détermination approximative du nombre minimal d'éprouvettes, on peut employer les valeurs moyennes des coefficients de variation des propriétés du bois donnés dans le tableau suivant :

Propriété du bois	Coefficient de variation %
Nombre de couches annuelles par centimètre	37
Pourcentage du bois final	28
Masse volumique Humidité d'équilibre	ANDAI
Coefficient de retrait : linéaire	andard
volumique	16
Résistance à la compression parallèle aux fibres https://standards.iteh.a	ISO 3129 i/catalog/3tandar
Résistance à la flexion statique	19bc29 15 4e30/is
Résistance au cisaillement parallèle aux fibres	20
Module d'élasticité à la flexion statique	20
Limite de proportionnalité (résistance limite conventionnelle) à la compression	
perpendiculaire aux fibres	20
Résistance à la traction : parallèle aux fibres perpendiculaire aux fibres	20 20
Résilience à la flexion	32
Dureté	17

4.6 Conditionnement

4.6.1 Les éprouvettes tirées du matériau conditionné conformément à 3.1 doivent être conditionnées à une température de 20 ± 2 °C et à une humidité relative de l'air de 65 ± 3 % jusqu'au moment où le bois atteint l'humidité d'équilibre.

Sous certains climats, il est permis de conditionner les éprouvettes à une température supérieure à 20 °C en opérant une modification appropriée de l'humidité relative de l'air, afin d'obtenir le même état d'équilibre de l'humidité du bois.

4.6.2 Les éprouvettes tirées du matériau conformément à 4.2 doivent avoir une humidité égale ou supérieure au point

de saturation des fibres. Il est permis de tirer des éprouvettes à la compression et au cisaillement d'un matériau présentant une humidité inférieure au point de saturation des fibres. Dans ce cas, les éprouvettes doivent être trempées avant l'essai, dans l'eau jusqu'au moment où leurs dimensions cessent de varier.

4.6.3 Les éprouvettes conditionnées doivent être conservées de telle manière que leur humidité soit maintenue constante jusqu'au moment de l'essai.

5 CONDITIONS GÉNÉRALES POUR LES ESSAIS PHYSIQUES ET MÉCANIQUES

5.1 Conditions d'humidité et de température de l'air ambiant du laboratoire

La température de l'air ambiant du laboratoire doit être maintenue à $20\pm2\,^{\circ}$ C. L'humidité de l'air doit être de préférence $65\pm3\,\%$.

En cas d'impossibilité de maintenir une telle humidité dans le laboratoire, les éprouvettes doivent être essayées aussitôt après leur conditionnement et à la sortie du récipient hermétique.

5.2 Mode opératoire

|s/sist/\$5221)ddCes|@ssais||doivent_être effectués conformément aux 0-312 Nonmes Internationales correspondantes.

5.2.2 Après les essais, déterminer l'humidité et, si nécessaire, la masse volumique des éprouvettes. Il est recommandé de déterminer l'humidité sur des échantillons découpés dans les éprouvettes. Le nombre minimal d'éprouvettes, n_W , pour la détermination de leur humidité moyenne, doit être au moins égal à 3 et est donné par la formule

$$n_W = n_{\min} \frac{V_W^2}{V_Z^2}$$

οù

 n_{\min} est le nombre d'éprouvettes utilisées pour déterminer une propriété du bois ayant le coefficient de variation V;

 V_{W} est le coefficient de variation de l'humidité des éprouvettes.

Les résultats doivent être arrondis au nombre entier le plus proche.

6 CALCUL ET EXPRESSION DES RÉSULTATS

6.1 Les valeurs des propriétés du bois doivent être calculées selon les formules mentionnées dans les Normes Internationales concernant les méthodes d'essai correspondantes.

ISO 3129-1975 (F)

- 6.2 Lors de l'examen des résultats d'essai, déterminer
 - a) la moyenne arithmétique, \overline{x} , selon la formule

$$\bar{x} = \frac{\sum x_i}{n}$$

b) l'écart-type, s, selon la formule

$$s = \pm \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

c) l'écart-type, s_{r} , de la moyenne arithmétique, selon la formule

$$s_r = \pm \frac{s}{\sqrt{n}}$$

d) le coefficient de variation en pourcentage, V, selon la formule

$$V = \frac{s}{\overline{x}} \times 100$$

e) l'indice de précision de l'essai, en pourcentage, p, pour le niveau de confiance de 0,95, selon la formule

$$p = \frac{2s_r}{\overline{x}} \times 100$$

οù

 x_i est la valeur d'une seule observation;

n est le nombre d'observations.

6.3 Si nécessaire, ramener les résultats d'essai à l'humidité de 12 %. Si l'humidité moyenne est déterminée à partir de l'humidité de plusieurs éprouvettes, il est admis d'effectuer la correction d'humidité sur la moyenne arithmétique des résultats d'essai.

7 PROCÈS-VERBAL D'ESSAI

Le procès-verbal d'essai doit comprendre les résultats des mesurages et des calculs et mentionner le type d'essai, la direction de l'application de la charge, la température et l'humidité de l'air en laboratoire, l'espèce du bois et les informations sur l'échantillonnage.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3129:1975

https://standards.iteh.ai/catalog/standards/sist/45b29de0-4dc5-4d81-913f-a9bc29ae4e30/iso-3129-1975

Page blanche

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3129:1975 https://standards.iteh.ai/catalog/standards/sist/45b29de0-4dc5-4d81-913f-a9bc29ae4e30/iso-3129-1975

Page blanche

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3129:1975 https://standards.iteh.ai/catalog/standards/sist/45b29de0-4dc5-4d81-913f-a9bc29ae4e30/iso-3129-1975