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Standard Practice for

Calculating and Using Basic Statistics *

This standard is issued under the fixed designation E2586; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon«) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers methods and equations for computing and presenting basic descriptive statistics using a set of sampl
data containing a single variable. This practice includes simple descriptive statistics for variable data, tabular and graphical
methods for variable data, and methods for summarizing simple attribute data. Some interpretation and guidance for use is als
included.

1.2 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations
of calculation methods. The examples are not binding on products or test methods treated.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility

of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory
limitations prior to use.

2. Referenced Documents

2.1 ASTM Standard$:

E178Practice for Dealing With Outlying Observations

E456Terminology Relating to Quality and Statistics

E2282Guide for Defining the Test Result of a Test Method

2.2 1SO Standards:

ISO 3534-1Statistics—Vocabulary and Symbols, part 1: Probability and General Statistical Terms
ISO 3534-2Statistics—Vocabulary and Symbols, part 2: Applied Statistics

3. Terminology

3.1 Definitions:

3.1.1 Unless otherwise noted, terms relating to quality and statistics are as defined in TermixdiGgy

3.1.2 characteristic, n—a property of items in a sample or population which, when measured, counted, or otherwise observed,
helps to distinguish among the items. E2282

3.1.3 coefficient of variation, CV, nfer a nonnegative characteristic, the ratio of the standard deviation to the mean for a
population or sample

1 This practice is under the jurisdiction of ASTM Committé&1 on Quality and Statistics and is the direct responsibility of Subcomntittdel0on Sampling / Statistics.

Current edition approved-Feb—+520120ct. 1, 2012. Published-Mareh 2012November 2012. Originally approved in 2007. Last previous edition approved in 2012 as
E2586—12.E2586 — 12a. DOK-16-1520/E2586-12A.10.1520/E2586-12B.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astrArurgaFBook of ASTM Standards
volume information, refer to the standard’s Document Summary page on the ASTM website.

3 Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

3.1.3.1 Discussion—
The coefficient of variation is often expressed as a percentage.

3.1.3.2 Discussion—

This statistic is also known as thelative standard deviation, RSD
3.1.4 confidence bound, nseeconfidence limit
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3.1.5 confidence coefficient, nseeconfidence level

3.1.6 confidence interval, nan interval estimate [L, U] with the statistics L and U as limits for the parameted with
confidence level 1 ~where Pr(L U) 1-.

3.1.6.1 Discussion—

The confidence level, 1 —eflects the proportion of cases that the confidence interval [L, U] would contain or cover the true
parameter value in a series of repeated random samples under identical conditions. Once L and U are given values, the resultin
confidence interval either does or does not contain it. In this secsefidence applies not to the particular interval but only to

the long run proportion of cases when repeating the procedure many times.

3.1.7 confidence level, nthe value, 1~ of the probability associated with a confidence interval, often expressed as a
percentage.

3.1.7.1 Discussion—

is generally a small number. Confidence level is often 95 % or 99 %.
3.1.8 confidence limit, n-each of the limits, L and U, of a confidence interval, or the limit of a one-sided confidence interval.

3.1.9 degrees of freedom, nthe number of independent data points minus the number of parameters that have to be estimated
before calculating the variance.

comments

3.1.10 estimate, n-sample statistic used to approximate a population parameter.

3.1.11 histogram, n—graphical representation of the frequency distribution of a characteristic consisting of a set of rectangles
with area proportional to the frequency. ISO 3534-1

3.1.11.1 Discussion—

While not required, equal bar or class widths are recommended for histograms.
3.1.12 interquartile range, IQR, nthe 73" percentile (0.75 quantile) minus the"2percentile (0.25 quantile), for a data set.

3.1.13 kurtosis,,, g,, n—for a population or a sample, a measure of the weight of the tails of a distribution relative to the center,
calculated as the ratio of the fourth central moment (empirical if a sample, theoretical if a population applies) to the standard
deviation (samples, or population)) raised to the fourth power, minus 3 (also referred to as excess kurtosis).

3.1.14 mean, n-ef a population, Y, average or expected value of a characteristic in a populaifam sample, xsum of the
observed values in the sample divided by the sample size.

3.1.15 median, X , n-the 50" percentile in a population or sample.
3.1.15.1 Discussion—

The sample median is thén + 1)/2] order statistic if the sample sizeis odd and is the average of th&2] and[n/2 + 1] order
statistics ifn is even.

3.1.16 midrange, n—-average of the minimum and maximum values in a sample.
3.1.17 order statistic, ¥, n—value of thek™ observed value in a sample after sorting by order of magnitude.

3.1.17.1 Discussion—

For a sample of size, the first order statistig,, is the minimum valuex, is the maximum value.
3.1.18 parameter, n-seepopulation parameter

3.1.19 percentile, n—guantile of a sample or a population, for which the fraction less than or equal to the value is expressed
as a percentage.

3.1.20 population, n—the totality of items or units of material under consideration.
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3.1.21 population parameter, nsummary measure of the values of some characteristic of a population. SO 3534-2
3.1.22 statistic, n—seesample statistic

3.1.23 quantile, n—value such that a fractiohof the sample or population is less than or equal to that value.
3.1.24range, R, n-maximum value minus the minimum value in a sample.

3.1.25 sample, n—a group of observations or test results, taken from a larger collection of observations or test results, which
serves to provide information that may be used as a basis for making a decision concerning the larger collection.

3.1.26 sample size, n, naamber of observed values in the sample
3.1.27 sample statistic, n-summary measure of the observed values of a sample.

3.1.28 skewness,, g,;, n—for population or sample, a measure of symmetry of a distribution, calculated as the ratio of the third
central moment (empirical if a sample, and theoretical if a population applies) to the standard deviation amplepulation,
) raised to the third power.

3.1.29 standard error—standard deviation of the population of values of a sample statistic in repeated sampling, or an estimate
of it.

3.1.29.1 Discussion—

If the standard error of a statistic is estimated, it will itself be a statistic with some variance that depends on the sample size.

3.1.30 standard deviation—of a populatipnthe square root of the average or expected value of the squared deviation of a
variable from its mean; -ef a sample, sthe square root of the sum of the squared deviations of the observed values in the sample
divided by the sample size minus 1.

3.1.31variance,? &%, n—square of the standard deviation of the population or sample.

3.1.31.1 Discussion—

For a finite population? is calculated as the sum of squared deviations of values from the mean, divide&dnya continuous
population,? is calculated by integratingc( ) with respect to the density function. For a sampfeis calculated as the sum
of the squared deviations of observed values from their average divided by one less than the sample size.

3.1.32 Z-score, n—-ebserved value minus the sample mean divided by the sample standard deviation.

4. Significance and Use

4.1 This practice provides approaches for characterizing a sampleluffervations that arrive in the form of a data set. Large
data sets from organizations, businesses, and governmental agencies exist in the form of records and other empirical observatior
Research institutions and laboratories at universities, government agencies, and the private sector also generate consideral
amounts of empirical data.

4.1.1 A data set containing a single variable usually consists of a column of numbers. Each row is a separate observation o
instance of measurement of the variable. The numbers themselves are the result of applying the measurement process to tl
variable being studied or observed. We may refer to each observation of a variable as an item in the data set. In many situations
there may be several variables defined for study.

4.1.2 The sample is selected from a larger set called the population. The population can be a finite set of items, a very large
or essentially unlimited set of items, or a process. In a process, the items originate over time and the population is dynamic,
continuing to emerge and possibly change over time. Sample data serve as representatives of the population from which the samp
originates. It is the population that is of primary interest in any particular study.

4.2 The data (measurements and observations) may be of the variable type or the simple attribute type. In the case of attribute:
the data may be either binary trials or a count of a defined event over some interval (time, space, volume, weight, or area). Binary
trials consist of a sequence of 0s and 1s in which a “1” indicates that the inspected item exhibited the attribute being studied anc
a “0” indicates the item did not exhibit the attribute. Each inspection item is assigned either a “0” or a “1.” Such data are often
governed by the binomial distribution. For a count of events over some interval, the number of times the event is observed on the
inspection interval is recorded for eachroinspection intervals. The Poisson distribution often governs counting events over an
interval.

4.3 For sample data to be used to draw conclusions about the population, the process of sampling and data collection must b
considered, at least potentially, repeatable. Descriptive statistics are calculated using real sample data that will vary in repeating
the sampling process. As such, a statistic is a random variable subject to variation in its own right. The sample statistic usually
has a corresponding parameter in the population that is unknown (see Sgcfidre point of using a statistic is to summarize
the data set and estimate a corresponding population characteristic or parameter.
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FIG. 1 Probability Density Function—Four Examples of Distribution Shape

4.4 Descriptive statistics consider numerical, tabular, and graphical methods for summarizing a set of data. The methods
considered in this practice are used for summarizing the observations from a single variable.

4.5 The descriptive statistics described in this practice are:
4.5.1 Mean, median, min, max, range, mid range, order statistic, quartile, empirical percentile, quantile, interquartile range,
variance, standard deviatioB;score, coefficient of variation, skewness and kurtosis, and standard error.

4.6 Tabular methods described in this practice are:
4.6.1 Frequency distribution, relative frequency distribution, cumulative frequency distribution, and cumulative relative
frequency distribution.

4.7 Graphical methods described in this practice are:
4.7.1 Histogram, ogive, boxplot, dotplot, normal probability plot, and g-q plot.

4.8 While the methods described in this practice may be used to summarize any set of observations, the results obtained by usin
them may be of little value from the standpoint of interpretation unless the data quality is acceptable and satisfies certain
requirements. To be useful for inductive generalization, any sample of observations that is treated as a single group for presentatio
purposes must represent a series of measurements, all made under essentially the same test conditions, on a material or prodt
all of which have been produced under essentially the same conditions. When these criteria are met, we are minimizing the dange
of mixing two or more distinctly different sets of data.

4.8.1 If a given collection of data consists of two or more samples collected under different test conditions or representing
material produced under different conditions (that is, different populations), it should be considered as two or more separate
subgroups of observations, each to be treated independently in a data analysis program. Merging of such subgroups, representil
significantly different conditions, may lead to a presentation that will be of little practical value. Briefly, any sample of observations
to which these methods are applied should be homogeneous or, in the case of a process, have originated from a process in a st
of statistical control.

4.9 The methods developed in Sectidi)s/, and8 apply to the sample data. There will be no misunderstanding when, for
example, the term “mean” is indicated, that the meaning is sample mean, not population mean, unless indicated otherwise. It is
understood that there is a data set containing n observations. The data set may be denoted as:

Xps Xy Xg oo Xy @®

4.9.1 There is no order of magnitude implied by the subscript notation unless subscripts are contained in parentB&sis (see

5. Characteristics of Populations

5.1 A population is the totality of a set of items under consideration. Populations may be finite or unlimited in size and may
be existing or continuing to emerge as, for example, in a process. For continuous vaKatdpsesenting an essentially unlimited
population or a process, the population is mathematically characterized by a probability density flfx}tibhe density function
visually describes the shape of the distribution as for exampgt&inl Mathematically, the only requirements of a density function
are that its ordinates be all positive and that the total area under the curve be equal to 1.

5.1.1 Area under the density function curve is equivalent to probability for the vatkatiiae probability thaX shall occur
between any two values, sayandt, is given by the area under the curve bounded by the two given valugaradt. This is
expressed mathematically as a definite integral over the density function betvaeer:

t

P~s,X<t!5¥%f~x1dx )

S
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FIG. 2 Cumulative Distribution Function, F(x), and Density Function, f(x) Relationship

5.1.2 Agreat variety of distribution shapes are theoretically possible. When the curve is symmetric, we say that the distribution
is symmetric; otherwise, it is asymmetric. A distribution having a longer tail on the right side is called right skewed; a distribution
having a longer tail on the left is called left skewed.

5.1.3 For a given density functiof(x), the relationship to cumulative area under the curve may be graphically shown in the
form of a cumulative distribution functiork(x). The functionF(x) plots the cumulative area undik) asx moves to the right.

Fig. 2 shows a symmetric distribution with its density functiéfx), plotted on the left-hand axis and distribution functi&ifx),
plotted on the right-hand axis.

5.1.4 Referring to th&(x) axis inFig. 2, observe thaf(30) = 0.5. The poink = 30 divides the distribution into two equal halves
with respect to probability (50 % on each sidedfin general, wher&(x) = 0.5, we call the poin the median or 50 percentile
of the distribution. In like manner, we may define any percentile, for example, theo2fhe 9¢" percentiles. In general, for
0<p<1,al0p % percentile is a location poinQ,, that divides the distribution into two parts, with 30% lying to the left and
(1 —p)100 % lying to the right.

5.2 A density function is often given as a equation with one or more parameters, which, when given values, allow the curve
to be drawrf: For many distributions, two parameters are sufficient (some have one parameter and others have more than two). The
parameters may also have meaning with respect to the shape of the curve, the scale used, or some other property of the curv

5.2.1 The mean or “expected value” of a distribution, denoted by the symbol y, is a parameter that defines the central location
of a distribution. The mean can be thought of as a “center of gravity” for the distribution. When the distribution is symmetric, the
mean will coincide with the 50 percentile and occur exactly in the center, splitting the area under the curve into two equal halves
of 0.5 each. For right-skewed distributions, the mean will occur to the right of the median; for left-skewed distributions, the mean
will occur to the left of the median.

5.2.2 The standard deviation, denoted by the symisohnother important parameter in many distributions. It carries the same
units as the variabl¥, and is also called a scale parameter. Generally, it is a standard measure of variability. The larger the value
of , the greater will be the variation in the varial{eOne of the most important theoretical distributions in statistics is the normal,
or Gaussian, distribution. It arises in complex phenomena when many uncontrolled factor effects cause variability and no single
effect is of dominating magnitude. The normal distribution is a symmetrical, bell-shaped curve and is completely determined by
its mean, Y, and its standard deviatiofl,he parameter p locates the center, or peak, of the distribution, and the parameter
determines its spread. The distance from the mean to the inflection point of the curve (maximum slope.pding)issillustrated
in Fig. 3

5.2.3 The probability of obtaining a value in a given interval on the measurement scale is the area under the curve over the
interval. This gives some numerical meaning to the paramétale 1gives the normal probability for several selected intervals
in terms of parameters p and@’he first two columns ifable 1lare known as the empirical rule for symmetric and mound-shaped
distributions.

5.2.4 The variance of a distributiofy, is the square of the standard deviation. It is the average value of the quantity
in the population. It is the variance that is computed first, and then the standard deviation is the positive square root of the variance
For a population specified by a density functiéx), the theoretical mean and variance are defined mathematically as:

U5 *xf~x1dx ©)

2

4In the same way a straight ling=mx+ b, has “parameters” referred to as the slopeandy-intercept,b. Once these parameters are known, the line is completely
known and may be drawn precisely.
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FIG. 3 Normal Distribution and Relationship to
Parameters p and o

TABLE 1 Areas Under the Curve for the Normal Distribution

Interval Area Interval Area
p+l 0.68270 W+ 0.674 0.50
p+2 0.95450 W+ 1.645 0.90
H+x3 0.99730 = 1.960 0.95
p+4 0.99994 W+ 2576 0.99
25 ¥ x 212 f~x!dx (4)

.
5.2.5 Here the variabl¥ is assumed to take on all values in the intervak{; but this need not be the case.

5.3 In addition to the mean and standard deviation, measures may be theoretically defined that attempt to describe the gener
shape of a distribution. Two such quantities are skewness and kurtosis. For a continuous varekdeiness is defined as the
average value of the quantit) & p)*/3, and kurtosis as the average value of the quanity (Y74, minus 3. Each of these
calculations is taken over the population. The symbols used for the theoretical skewness and kurjasisl areespectively.

For a population specified by a density functiéx), the theoretical skewness and kurtosis are defined mathematically as:

*

~X2 ! 3 f~x1dx
5 ®)
Xox2pl4f~x!dx
25— =23 ®)

5.3.1 Here again, the variablis assumed to take on all values in the intervak-

5.3.2 When a distribution is perfectly symmetrjc; 0. This is the case for the normal distributionFig. 3. If the distribution
has a longer tail on the right, we say that it is right skewed an@ as inFig. 4. If the distribution has a longer tail on the left,
we say that it is left skewed ang 0 as inFig. 5.

5.3.3 For the normal distributior{g. 3), , = 0. The large base of applications for the normal distribution is the reason for
subtracting 3 in the definition of kurtosis. Subtracting of 3 from (6) mgke® for the normal distribution. For any distribution
the quantity, cannot be less than 42).°> Several examples of skewness and kurtosis as related to specific distributions are given
in Table 2

5.3.4 Table 2shows that there is great variation in both skewness and kurtosis for several commonly occurring distributions.
Also, for some distributions such as the normal, exponential, and uniform, skewness and kurtosis are constant and not depende
on the value of any other parameter; for others, however, skewness and kurtosis are a function of some other parameter. Here w
see that for the Poisson distribution, bgthnd,, are functions of the mean,For the Weibull distribution, both and, are
functions of the Weibull shape parameter

5.4 Statistics is the study of the properties, behavior, and treatment of numerical data. A statistic may be defined as any functior
of the data values that originate from a sample. In many applications in which one has a specific model in mind, the initial goal
is to try to estimate the population (model) parameters using the sample data. These estimates are called descriptive statistics. F

5The boldface numbers in parentheses refer to a list of references at the end of this standard.
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A Right Skewed Curve

FIG. 4 Curve with Positive Skewness, vy, >0

A Left Skewed Curve

FIG. 5 Curve with Negative Skewness, v, <0

TABLE 2 Skewness and Kurtosis for Selected Distribution Forms

Distribution Form Skewness Kurtosis
Normal 0 0
Exponential 2 6
Uniform 0 -1.2
Poisson® 1/= 1/
Student’s t® 0 6/(v — 4)
Weibull®, =3.6 0 -0.28
Weibull, =0.5 6.62 84.72
Weibull, =50.0 -1 1.9

A For the Poisson distribution, is the mean.

B For the Student’s t distribution, v is the degrees of freedom. When v < 4, kurtosis
is infinite.

€ For the Weibull distribution, is the shape parameter.

example, the sample mean and standard deviation are attempting to estimate the parametesam@Eadkewness and kurtosis
are attempting to estimatg and ,, and sample percentiles may be calculated that are attempting to estimate population
percentiles. In some cases, there may be more than one statistic that may be used for the same purpose.

5.4.1 In addition to estimation, descriptive statistics serve to organize and give meaning to the raw sample data. By itself a set
of numbers in columnar format may yield little useful information. The methods of descriptive statistics include numerical, tabular,
and graphical methods that will lead to great insight for the underlying phenomena being studied.

6. Descriptive Statistics

6.1 Mean or Arithmetic AverageFhe mean is a measure of centrality or central tendency of a distribution of observations. It
is most appropriate for symmetric distributions and is affected by distribution nonsymmetry (shape) and extreme values. The
calculation of the mean is the sum of thesample values divided by the number of valuesThis equation is:

n

Yy

X5 — ]

6.2 Median or 50" Percentile—Fhe median is a measure of centrality or central tendency that is generally not affected by the
extremes of the distribution. It is a value that divides the distribution into two equal parts. For continuous distributions, 50 % will
lie to the left and 50 % to the right of the median. To obtain th& pércentile of a sample, arrange thealues of a sample in
increasing order of magnitude. The median is tme{@)/2]" value whem is odd. Whem is even, the median lies between the
(n/2)" and the [(/2) + 1]" values and is not defined uniquely among the data values. It is then taken to be the arithmetic average
of these two values.
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TABLE 3 Values of the Constant, d,, for Converting the Sample
Range into an Estimate of Standard Deviation A

n d, n d, n d,

2 1.128 7 2.704 12 3.258
3 1.693 8 2.847 13 3.336
4 2.059 9 2.970 14 3.407
5 2.326 10 3.078 15 3.472
6 2.534 11 3.173 16 3.532

A Source: ASTM Manual on Presentation of Data and Control Chart Analysis(2).

6.2.1 As a measure of central tendency, the median is often preferred over the average, particularly for quantities that tend tc
be skewed in a natural way. Examples include life length of a product, salary, and other monetary quantities or any quantity that
has a natural lower or upper bound.

6.3 Midrange—Midrange is a measure of central tendency. It is the average of the largest (max) and smallest (min) observed
values in a sample af items. It is greatly affected by any outliers in the data set.

6.4 Max—The largest observed value in a samplenafems.
6.5 Min—The smallest observed value in a samplaatfems.

6.6 Range—Fhe differenceR, between the largest and smallest observed value in a sampleeafs is called the sample range
and is used as a measure of variation. Its equation is:

R5maxx! 2min~x! 8)

6.6.1 The sample range is useful for assessing variation for two basic realomnss gasy to calculate, an@)(it is readily
understood. But caution is advised when the sample size is modest to large as the min and max then come from the tails of th
distribution and can be extremely variable. The sample range is therefore directly affected by extreme values. In general, the
standard deviation of a sample is the preferred measure of variatio.(s&e

6.6.2 The range is particularly useful for small samples, say wire to 12 and there is possibly the burden of calculation,
as the standard deviation is more calculation intensive and abstract. An important application occurs when the range is used il
quality control applications. For a given sample size, the sample range can be converted into an estimate of the standard deviatior
This is done by dividing the range or average range in a group of ranges, by a cdRsthnwhich is the ratio of expected range
in a sample of size n to standard deviation for a normal distribufiable 3contains values ofl, for sample sizes of 2 through
16.

6.6.3 An important application of this type of estimate for the standard deviation is in quality control charts. When there are
available several sample ranges, all with the same samplensize take the average range and divide by the appropriate constant,

d,, from Table 3

6.7 Order Statistics-When the observations in a sample are arranged in order of increasing magnitude, the order statistics are:

X1, SX~2{ SX~31 =.. X na1 SX~I’\] (9)

6.7.1 The bracketed subscript notation indicates that the value is an ordered valuec(k'[limmekth largest value im called
the k™ order statistic of the sample. This value is said to have a rarkasfhiong the sample values. In a sample of sizthe
smallest observation ig,, and the largest observationxg,. The sample range may then be defined in terms of thant n"
order statistics:

R5X_,, 2X 4, (10)

6.8 Empirical Quantiles and PercentilesA—-quantile is a value that divides a distribution to leave a given fracfowof the
observations less than or equal to that value f0<<l). A percentile is the same value in which the fractipnis expressed as
a percent, 100%. For example, the 0.5 quantile or®@ercentile (also called the median) is a value such that half of the
observations exceed it and half are below it; the 0.75 quantile®p@Bcentile is a value such that 25 % of the observations exceed
it and 75 % are below it; the 0.9 quantile or"®percentile is a value such that 10 % of the observations exceed it and 90 % are
below it.

6.8.1 The sample estimate of a quantile or percentile is an order statistic or the weighted average of two adjacent order statistics
Thei™ order statistic in a sample of sizeis thei/(n + 1) quantile or 100(n + 1)" percentile estimat®The quantityi/(n + 1) is
referred to as the mean rank for tHeorder statistic. In repeated sampling, the expected fraction of the population lying below
thei™ order statistic in the sample is equalit(n + 1) for any continuous population.

6 Several alternatives to the mean rank equatifm+ 1) are availablé7), including the median rank and Kaplan-Meier methods. A equation for the exact median rank
is available but is computationally intensive. The Behnard approximation equation to the median+dhB)/n + 0.4), is widely used. The modified Kaplan-Meier equation
is (i—0.5)h.
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TABLE 4 Maximum Z-Scores Attainable for a Selected Sample

Size, n
n 3 5 10 11 15 18
Z(n) 1.155 1.789 2.846 3.015 3.615 4.007

6.8.2 To estimate the 108 percentile, compute an approximate rank value using the following equatiofm+ 1)p. If i is
an integer between 1 andinclusive, then the 1q8" percentile is estimated ag,. If i is not an integer, then drop the fractional
portion and keep the integer portion iofLet k be the retained integer portion andbe the dropped fractional portion (note that
0<r <1). The estimated 1@8' percentile is computed from the equation:

Xakzlr~x~k11z 2X~kz ! (11)
6.8.2.1 Example. For a sample of size 20, to estimate tffepEBcentile. Calculaten(+ 1)p = 21(0.15) = 3.15, s& = 3 and
r = 0.15. The 1% percentile is estimated ag;) + 0.15§4) — X))

6.9 Quartile—The 0.25 quantile or 2%percentile, Q, is the £ quartile. The 0.75 quantile or Spercentile, Q, is the third
quartile. The 58 percentile or Q, is the 29 quartile. Note that the 3Dpercentile is also referred to as the median.

6.10 Interquartile Range-Fhe difference between thé%3and F' quartiles is denoted as IQR:
IQR5Q;2Q, (12

6.10.1 The IQR is sometimes used as an alternative estimator of the standard deviation by dividing by an appropriate constant
This is particularly true when several outlying observations are present and may be inflating the ordinary calculation of the standard
deviation. The dividing constant will depend on the type of distribution being used. For example, in a normal distribution, the IQR
will span 1.35 standard deviations; then dividing the sample IQR by 1.35 will give an estimate of the standard deviation when a
normal distribution is used.

6.11 Variance—A measure of variation among a sample rofitems, which is the sum of the squared deviations of the
observations from their average value, divided by one less than the number of observations. It is calculated using one of the twc
following equation$

n n n 2
~X,2X1%2 n x22( x.)
iS( 1 i5 ' 'SQ !

n2l n~n21!

s?5 (13)

6.12 Standard Deviation-Fhe standard deviation is the positive square root of the varfafite symbol iss. It is used to
characterize the probable spread of the data set, but this use is dependent on distribution shape. For mound-shaped distributio
that are symmetric, such as the normal form, and modest to large sample size, we may use the standard deviation in conjunctio
with the empirical rule (se@able J). This rule states that approximately 68 % of the data will fall within one standard deviation
of the mean; 95 % within two standard deviations, and nearly all (99.7 %) within three standard deviations. The approximations
improve when the sample size is very large or unlimited and the underlying distribution is of the normal form. The rule is applied
to other symmetric mound-shaped distributions based on their resemblance to the normal distribution.

6.13 Z-Score—n a sample of n distinct observations, every sample value has an assatsterk. For sample valug, the
associated-score is computed as the number of standard deviations that thexyh&sefrom the sample mean. Positi¢escores
mean that the observation is to the right of the average; negative values mean that the observation is to the left of the average
Z-scores are calculated as:
~X; 2 X!
.5
S

(14)

6.13.1 Sampl&-scores are often useful for comparing the relative rank or merit of individual items in the s@hgoleres are
also used to help identify possible outliers in a set of data. There is a much-used rule of thumB-ftatra outside the bounds
of 63 is a possible outlier to be examined for a special cause. Care should be exercised when using this rule, particularly for very
small as well as very large sample sizes. For small sample sizes, it is not possible to db&iora outside the bounds 68
unlessn is at least 11Eq 15andTable 4illustrates this theory:

22,7 =-n211/R (15)

6.13.2 Table 4was constructed using the equation for the maximum (contained in(Bgf.

”These equations are algebraic equivalents, but the second form may be subject to round off error.
8When the denominator of the sample variance is takemiastead ofn— 1, the square root of this quantity is called the root mean squared deviation (RMS).
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6.13.3 On the other hand, for very large sample sizes, such=&50 or more, it is a common occurrence in practice to find
at least one-score outside the range 68. Where we can claim a normal distribution is the underlying model, the approximate
probability of at least on&-score beyond3 is approximately 50 % when the sample size is around 250 ABO0O, it is
approximately 55 %. A thorough treatment of the use of the sa@ygieore for detecting possible outlying observations may be
found in PracticeE178

6.14 Coefficient of Variation-For a non-negative characteristic, the coefficient of variation is the ratio of the standard deviation
to the average.

6.15 Skewness,,g-Skewness is a measure of the shape of a distribution. It characterizes asymmetry or skew in a distribution.
It may be positive or negative. If the distribution has a longer tail on the right side, the skewness will be positive; if the distribution
has a longer tail on the left side, the skewness will be negative. For a distribution that is perfectly symmetrical, the skewness will
be equal to 0; however, if the skewness is equal to 0, this does not imply that the distribution is symmetric.

6.16 Kurtosis, g—Kurtosis is a measure of the combined weight of the tails of a distribution relative to the rest of the
distribution.
6.16.1 Sample skewness and kurtosis are given by the equations:

n

~X, 2X13 _
sy o (~xi2x!“

9:° ns 1925 ns

(16)

6.16.2 Alternative estimates of skewness and kurtosis are defined in terkastaifstics. Thek-statistic equations have the
advantage of being less biased than the corresponding moment estimators. These statistics are defined by:

n

n(~x2x!2
— 2 i5
Ki5X K585 K5 oqi i) an
n n 2
n~ni1! (;xizf!4 3( (~xi2Y1 2)
k,5 - 2 (18)

~n211~n22/~n23! “~n22!~n23!

6.16.3 From thek-statistics, sample skewness and kurtosis are calculatedEpdf Notice than whem is large,g, andg,
reduce to approximately:

0, Kok3® 9,7k /K2 (19

6.16.4 One cannot definitely infer anything about the shape of a distribution from knowledgeioless we are willing to
assume some theoretical distribution such as the Pearson or other distribution family provides.

6.17 Degrees of Freedom:

6.17.1 The term ‘degrees of freedom’ is used in several ways in statistics. First, it is used to denote the number of items in a
sample that are free to vary and not constrained in any way when estimating a parameter. For example, the dewmations of
observations from their sample average must of necessity sum to zero. This propertyeiihsd, constitutes dinear constraint
on the sum of the deviations omesiduals y,2yy,2y....y.2y used in calculating the sample varians&;y2y!%~n21:. When
any n—1 of the deviations are known, tim¢h is determined by this constraint — thus onlyl of then sample values are free to
vary. This implies that knowledge of amy-1 of the residuals completely determines the last onenfesidualsy,2y, and hence
their sum of squaresy,2y2 and the sample varianeg2y%-n21! are said to have—1 degrees of freedonThe loss of one degree
of freedom is associated with the need to replace the unknown population mean p by the sampleyavdmgehat there is no
requirement thaty,2p1150. In estimating a parameter, such as a variance as described above, we have to estimate the mean p using
the sample average y . In doing so, we lose 1 degree of freedom.

6.17.1.1 More generally, when we have to estimamarameters, we loske degrees of freedom. In simple linear regression
where there ara pairs of dataX, y.) and the problem is to fit a linear model of the foysmxib through the data, there are two
parametersni andb) that must be estimated, and we effectively lose 2 degrees of freedom when calculating the residual variance.
The concept is further extended to multiple regression where thelegamameters that must be estimated and to other types of
statistical methods where parameters must be estimated.

6.17.2 Degrees of freedom are also used as an indexing variable for certain types of probability distributions associated with
the normal form. There are three important distributions that use this concept: the Studadtshi-square distributions both use
one parameter in their definition. The parameter in each case is referred to as its “degrees of freedom.” The F distribution requires

° For example, arfr distribution having four degrees of freedom in the denominator always has a theoretical skewness of 0, yet this distribution is not symmetric. Also,
see Ref(4), Chapter 27, for further discussion.
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