

International Standard

ISO 9211-1

Fourth edition

Optics and photonics — Optical coatings —

Part 1:

Vocabulary

iTeh Standards

Partie 1: Vocabulaire

Document Preview

SO/PRF 9211-1

https://standards.iteh.ai/catalog/standards/sist/670e4cd4-f1f9-41ad-abf0-0eebdf80ee3f/iso-prf-9211-1

PROOF/ÉPREUVE

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/PRF 9211-1

https://standards.iteh.ai/catalog/standards/sist/670e4cd4-f1f9-41ad-abf0-0eebdf80ee3f/iso-prf-9211-1

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org

Website: <u>www.iso.org</u> Published in Switzerland

PROOF/ÉPREUVE © ISO 2023 – All rights reserved

ForewordIntroduction				
2	Nori			
3	Terms and definitions			1
	3.1	Basic terms and definitions		1
	0.1	3.1.1	General terms	
		3.1.2	Terms for optical properties of a coated surface	
		3.1.3	Terms for polarization	
		3.1.4	Phase related terms	
	3.2	Desig	nations of coatings by principal function	
		3.2.1	Reflecting function	
		3.2.2	Antireflecting function	6
		3.2.3	Beam splitting function	
		3.2.4	Attenuating function	
		3.2.5	Bandpass or band rejection filtering function	7
		3.2.6	Selecting or combining function	7
		3.2.7	Polarizing function	7
		3.2.8	Phase changing function	
		3.2.9	Absorbing function	
		3.2.10		8
	3.3	Terms	s related to common coating imperfections	S
		3.3.1	Point-like imperfections Line-like imperfections Area-like imperfections	
		3.3.2	Line-like imperfections	
		3.3.3	Area-like imperfections	10
		3.3.4	Volume-like imperfections	10
Ann	ex A (ir	ıformati	ve) Micrographs of common types of coating imperfections	11
Bibl	liogran]	hv		20

https://standards.iteh.ai/catalog/standards/sist/670e4cd4-f1f9-41ad-abf0-0eebdf80ee3f/iso-prf-9211-

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 172, *Optics and photonic*, Subcommittee SC 3, *Optical materials and components*.

This fourth edition cancels and replaces the third edition (ISO 9211-1:2018), which has been technically revised.

The main changes are as follows:

- ISO/PRF 9211-1
- addition of the definition of spectral optical density;
- explanations of subscript for spectral average;
- explanations of average transmittance, reflectance, absorptance, and optical density over wavelength or wave number.

A list of all parts in the ISO 9211 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The optical properties of a coated surface are characterized by spectrophotometric values. These values relate to the energy transported by electromagnetic waves (radiant or luminous) and they vary as a function of the wavelength, the angle of incidence, and the state of polarization. Additional influences can be caused by scattering.

NOTE 1 The functional spectral dependency is generally indicated by including the wavelength (λ) in parentheses as part of the symbol.

NOTE 2 The wavelength (λ) can be replaced by the wavenumber (σ) or the photon energy ($h\nu$). h = Planck constant; ν = frequency. The units recommended are the nanometre (nm) or the micrometre (μ m) for the wavelength, the reciprocal centimetre (cm⁻¹) for the wavenumber and the electron volt (eV) for the photon energy.

When a coating is used at an angle of incidence different from zero, its characteristics depend upon the state of polarization of the incident radiation and it can influence the polarization state of the emergent radiation. It might then be necessary to indicate the orientation of the electric field vector in relation to the plane of incidence.

The coatings are defined according to their function, i.e. according to the nature of the principal modification to the surface properties that they realize. A coating intended to realize a principal function as defined in Table 1 can also include one or more secondary functions. Their relative importance with regard to the principal function may be indicated.

A surface for visual applications can be characterized by colorimetric parameters. These depend on the reference illumination source, the reference observer, and the optical properties of the surface. Colorimetric parameters are not part of this standard.

Examples of coating imperfections are given in <u>Annex A</u>. Test methods for the surface imperfections are described in ISO 14997.

Document Preview

ISO/PRF 9211-1

https://standards.iteh.ai/catalog/standards/sist/6/Ue4cd4-f1f9-4lad-abf0-0eebdf80ee3f/iso-prf-921l-

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/PRF 9211-1

https://standards.iteh.ai/catalog/standards/sist/670e4cd4-f1f9-41ad-abf0-0eebdf80ee3f/iso-prf-9211-1

Optics and photonics — Optical coatings —

Part 1:

Vocabulary

WARNING — The electronic file of this document contains colours which are considered to be useful for the correct understanding of the document. Users should therefore consider printing this document using a colour printer.

1 Scope

This document defines terms relevant to optical coatings. These terms are grouped in four classes: Terms and definitions, definition of coatings by function, definitions of common coating imperfections and other definitions.

This document identifies surface treatments of components and substrates excluding ophthalmic optics (spectacles) by the application of optical coatings and gives a standard form for their specification. It defines the general characteristics and the test and measurement methods whenever necessary, but is not intended to define the process method.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11145, Optics and photonics — Lasers and laser-related equipment — Vocabulary and symbols

ISO 80000-7, Quantities and units — Part 7: Light and radiation

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11145 and ISO 80000-7 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1 Basic terms and definitions

3.1.1 General terms

3.1.1.1

surface treatment of components and substrates

application of a coating of material(s) intended to modify the optical, physical or chemical characteristics originally possessed by the surface of a component

Note 1 to entry: The substrates are considered to be geometrically perfect and optically homogeneous. In reality, an assembly made up of a substrate and a coating is identified and measured experimentally as an entity.

PROOF/ÉPREUVE

© ISO 2023 - All rights reserved

3.1.1.2

incident medium

medium from which the electromagnetic radiation enters a coating

3.1.1.3

emergent medium

medium into which the electromagnetic radiation exits a coating

Note 1 to entry: Besides acting as mechanical support, the substrate carrying the coating physically can constitute the incident medium and/or the emergent medium.

3.1.1.4

clear aperture

effective aperture

surface area to meet specifications

3.1.1.5

rim

surface area outside of the clear aperture

3.1.1.6

witness sample

sample that represents the actual coated component used for spectral and environmental testing

Note 1 to entry: The details of witness samples and measurements (e.g. material, surface texture, dimensions, number per batch, position in the coating chamber, etc.) is subject to agreement between manufacturer and customer.

3.1.2 Terms for optical properties of a coated surface

3.1.2.1

spectral transmittance

 $\tau(\lambda)$

ratio of the spectral radiant or luminous flux transmitted to that of the incident radiant or luminous flux

Note 1 to entry: Spectral transmittance is related to spectral optical density $D(\lambda)$ by the formula: $\tau(\lambda) = 10^{-D(\lambda)}$.

Note 2 to entry: Wherever the Greek letter τ is mistakable $T(\lambda)$ may be used. _abf()_0eebdf80ee3f/iso-prf-9211-1

3.1.2.2

average spectral transmittance over wavelength

$$\tau_{\text{ave}}(\lambda_1 \text{ to } \lambda_2)$$

average of the spectral transmittance over a specified wavelength range

$$\tau_{\text{ave}}(\lambda_1 \text{ to } \lambda_2) = \frac{\int_{\lambda_1}^{\lambda_2} \tau(\lambda) d\lambda}{\lambda_2 - \lambda_1} \approx \frac{\sum_{i=1}^m \tau(\lambda_i) \Delta \lambda}{\lambda_2 - \lambda_1} = \frac{\sum_{i=1}^m \tau(\lambda_i)}{m}$$

where

$$\Delta \lambda = \frac{\lambda_2 - \lambda_1}{m}$$

Note 1 to entry: The average spectral transmittance over wavelength has a different value than the average transmittance over wavenumber even if the range of wavelength is equivalent to the range of wavenumber.

Note 2 to entry: The range of wavelength and units $(\lambda_1 \text{ to } \lambda_2)$ may be given.

Note 3 to entry: The index "avg" may be used instead of "ave".

3.1.2.3

average spectral transmittance over wavenumber

 $\tau_{\text{ave}}(\sigma_1 \text{ to } \sigma_2)$

average of the spectral transmittance over a specified wavenumber range

$$\tau_{\text{ave}}(\sigma_1 \text{ to } \sigma_2) = \frac{\int_{\sigma_1}^{\sigma_2} \tau(\sigma) d\sigma}{\sigma_2 - \sigma_1} \approx \frac{\sum_{i=1}^m \tau(\sigma_i) \Delta\sigma}{\sigma_2 - \sigma_1} = \frac{\sum_{i=1}^m \tau(\sigma_i)}{m}$$

where

$$\Delta \sigma = \frac{\sigma_2 - \sigma_1}{m}$$

Note 1 to entry: The average spectral transmittance over wavelength has a different value than the average transmittance over wavenumber even if the range of wavelength is equivalent to the range of wavenumber.

Note 2 to entry: The average spectral transmittance over wavenumber is used mainly for large ranges, i.e. broadband filters in the Infrared.

Note 3 to entry: The range of wavenumber and units $(\sigma_1 \text{ to } \sigma_2)$ may be given.

Note 4 to entry: The index "avg" may be used instead of "ave".

3.1.2.4

spectral reflectance

 $\rho(\lambda)$

ratio of the spectral radiant or luminous flux reflected to that of the incident radiant or luminous flux

Note 1 to entry: Wherever the Greek letter ρ is mistakable $R(\lambda)$ may be used.

Note 2 to entry: Average spectral reflectance over wavenumber or over wavelength can be calculated in the same manner as that shown for spectral transmittance.

3.1.2.5

spectral absorptance

 $\alpha(\lambda)$ ttps://standards.iteh.ai/catalog/standards/sist/670e4cd4-f1f9-41ad-abf0-0eebdf80ee3f/iso-prf-9211-ratio of the spectral radiant or luminous flux absorbed to that of the incident radiant or luminous flux

Note 1 to entry: Wherever the Greek letter α is mistakable $A(\lambda)$ may be used.

Note 2 to entry: The quantities defined in 3.1.2.1, 3.1.2.4 and 3.1.2.5 are interrelated as follows:

$$1 = \tau(\lambda) + \rho(\lambda) + \alpha(\lambda)$$

with

$$\tau(\lambda) = \tau_{\rm r}(\lambda) + \tau_{\rm d}(\lambda)$$

$$\rho(\lambda) = \rho_{\rm r}(\lambda) + \rho_{\rm d}(\lambda)$$

where

- $\tau_r(\lambda)$ is the specular spectral transmittance (regular);
- $\rho_{\rm r}(\lambda)$ is the specular spectral reflectance (regular);
- $\tau_{\rm d}(\lambda)$ is the diffuse spectral transmittance (scattered);
- $\rho_{\rm d}(\lambda)$ is the diffuse spectral reflectance (scattered).

PROOF/ÉPREUVE

© ISO 2023 - All rights reserved

Note 3 to entry: Specular transmittance and specular reflectance are sometimes referred to as regular transmittance and regular reflectance, respectively.

Note 4 to entry: Average spectral absorptance and optical density over wavenumber or over wavelength can be calculated in the same manner as that shown for spectral transmittance.

3.1.2.6

spectral optical density

 $D(\lambda)$

logarithm to the base 10 of the reciprocal of the spectral transmittance (3.1.2.1)

$$D(\lambda) = \lg \frac{1}{\tau(\lambda)}$$

[SOURCE: ISO 23364:2021, 3.3.1]

Note 1 to entry: Average spectral optical density over wavenumber or over wavelength can be calculated in the same manner as that shown for spectral transmittance.

3.1.2.7

spectral scattering

change of the spatial distribution of a beam of radiation spread in many directions by a surface or a medium without any change of frequency of the monochromatic components of which the radiation is composed

3.1.2.8

refractive index

 $n(\lambda)$

ratio of the velocity of propagation of electromagnetic radiation in vacuum to the velocity of propagation of electromagnetic radiation in a medium

Note 1 to entry: The wavelength is defined in vacuum.

3.1.2.9

angle of incidence

Θ

angle between the normal to the optical surface and the incident ray

Note 1 to entry: Unless otherwise specified, the angle of incidence is equal to 0° ; this means the incident rays are normal to the optical surface.

3.1.2.10

plane of incidence

plane incorporating the normal to the surface and the incident ray

3.1.3 Terms for polarization

3.1.3.1

linear polarization

property of electromagnetic radiation in which the electric field vector oscillates along a fixed direction

Note 1 to entry: The oscillation is confined to a plane containing the direction of propagation of the radiation, in a homogeneous optical medium.

Note 2 to entry: A source is called "linearly polarized" if the degree of linear polarization is greater than 0,9 and the polarization direction is constant over time.

Note 3 to entry: S-polarization refers to linear polarization where the electric field vector is perpendicular to the plane of incidence.

Note 4 to entry: P-polarization refers to linear polarization where the electric field vector is parallel to the plane of incidence.