INTERNATIONAL STANDARD

Rolling bearings – Bearings with spherical outside surface and

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXCHAPOCHAS OPPAHUSALUS TIO CTAHDAPTUSALUS ORGANISATION INTERNATIONALE DE NORMALISATION

extended inner ring width – Eccentric locking collars

Roulements - Roulements à surface extérieure sphérique et à bague intérieure large - Bague de blocage excentrique

First edition – 1974-06-01h STANDARD PREVIEW (standards.iteh.ai) Replaced by 150 96-28 1992 ISO 0145:1974

https://standards.iteh.ai/catalog/standards/sist/cdcfdc40-d2b1-499f-9aaa-614a99c7e643/iso-3145-1974

UDC 621.822.6/8 : 6.21.887

Ref. No. ISO 3145-1974 (E)

Descriptors : rolling bearings, ball bearings, dimensions, dimensional tolerances.

3145

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3145 was drawn up by Technical Committee ISO/TC 4. *Rolling bearings*, and circulated to the Member Bodies in February 1973.

It has been approved by the Member Bodies of the following countries iteh.ai)

Australia	India	ISweden 5:1974
Austria	htay://standards.ite	eh.ai/catalo Switzenland ist/cdcfdc40-d2b1-499f-9aaa-
Belgium	Japan	614a99c Thailand-3145-1974
Bulgaria	Mexico	Turkey
Canada	Netherlands	United Kingdom
France	Poland	U.S.A.
Germany	Romania	
Hungary	Spain	

This International Standard has also been approved by the International Union of Railways (UIC).

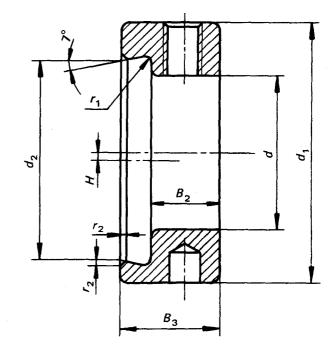
The Member Body of the following country expressed disapproval of the document on technical grounds :

U.S.S.R.

© International Organization for Standardization, 1974 •

Printed in Switzerland

Rolling bearings – Bearings with spherical outside surface and extended inner ring width – Eccentric locking collars


1 SCOPE AND FIELD OF APPLICATION NDARD PREVIEW

This International Standard specifies boundary dimensions and tolerances for eccentric locking collars used with rolling bearings with spherical outside surface and extended inner ring width, for which boundary dimensions are given in ISO 2264, Rolling bearings – Bearings with spherical outside surface and extended inner ring width, tables 1 and 3. ISO 3145:1974

https://standards.iteh.ai/catalog/standards/sist/cdcfdc40-d2b1-499f-9aaa-614a99c7e643/iso-3145-1974

2 SYMBOLS

- d = collar bore diameter, nominal
- $d_1 = \text{collar outside diameter, nominal}$
- d₂ = small diameter of eccentric surface (at theoretical sharp corners at face of collar), nominal
- B_2 = collar bore width, nominal
- $B_3 = \text{collar width, nominal}$
- H = eccentricity, nominal
- Δ_{ds} = collar bore diameter deviation
- Δ_{d2s} = deviation of small diameter of eccentric surface
- Δ_{Hs} = eccentricity deviation
- r₁ = fillet radius of eccentric surface, nominal
- $r_{1s max}$ = the largest single fillet radius of eccentric surface
- r₂ = chamfer dimension of eccentric surface, nominal
- $r_{2s \text{ min}}$ = the smallest single chamfer dimension of eccentric surface

3 BOUNDARY DIMENSIONS

1	ar bore meter	Eccentric locking collar													
d		d d _{1 max}			<i>d</i> ₂		B ₂		в ₃		н		2s min	r ₁	s max
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
12,700 14,288 15,875 17	1/2 9/16 5/8	28,6	1.13	21,6	0.850	9,5	0.374	13,5	0.531	0,8	0.031	0,8	0.031	0,4	0.016
17,462	11/16							ļ		 			_		
19,050 20	3/4	33,3	1.31	26,6	1.047	9,5	0.374	13,5	0.531	0,8	0.031	0,8	0.031	0,4	0.016
20,638 22,225 23,812 25 25,400	13/16 7/8 15/16 1	38,1	1.50	31,6	1.244	9,5	0.374	13,5	0.531	0,8	0.031	0,8	0.031	0,4	0.016
26,988 28,575 30 30,162 31,750	1 1/16 1 1/8 1 3/16 1 1/4	44,5	1.75	iTe 37,9	h S7	rar tan	NDA 0.469 dar	RD d ^{15,9} i	PR 0.626	EV aî)	EV 0.031	0,8	0.031	0,4	0.016
31,750 33,338 34,925 35 36,512	1 1/4 1 5/16. 1 3/8 1 7/16	55,6	ht 2.19	ps://star 44,7	dards.ite 1.760	h.ai/cata 614a 13,5	<u>ISO 3</u> 10g/stan 99.7564	145:197 1ards/si 8/iso-31	4 t/cdcfdc 45-1974 0.689	40-d2b 0,8	0.031	aaa- 0,8	0.031	0,4	0.016
38,100 39,688 40	1 1/2 1 9/16	60,3	2.37	49,4	1.945	13,5	0.531	18,3	0.720	1,6	0.063	1,2	0.047	0,4	0.016
41,275 42,862 44,450 45	1 5/8 1 11/16 1 3/4	63,5	2.50	54,4	2.142	13,5	0.531	18,3	0.720	1,6	0.063	1,2	0.047	0,4	0.016
46,038 47,625 49,212 50 50,800	1 13/16 1 7/8 1 15/16 2	69,9	2.75	60,0	2.362	13,5	0.531	18,3	0.720	1,6	0.063	1,2	0.047	0,4	0.016
50,800 52,388 53,975 55 55,562	2 2 1/16 2 1/8 2 3/16	76,2	3.00	66,9	2.634	15,9	0.626	20,7	0.815	1,6	0.063	1,2	0.047	0,4	0.016
57,150 58,738 60 60,325 61,912	2 1/4 2 5/16 2 3/8 2 7/16	84,2	3.31	73,5	2.894	15,9	0.626	22,3	0.878	1,6	0.063	1,6	0.063	0,4	0.016

TABLE 1 – Eccentric locking collars for bearings with spherical outside surface and extended inner ring width – Diameter Series 2 – Wide and narrow overall width

2

4 TOLERANCES

· · ·

.

TABLE 2

Collar bore diameter d			Collar bore diameter deviation A _{ds}				Deviation of small diameter of eccentric surface Δ _{d2s}				Eccentricity deviation ^Δ Hs				
mm in		mm in			mm		ir	in		mm		in			
over	incl.	over	incl.	high	low	high	low	high	low	high	low	high	low	high	low
	36,512	-	1 7/16	+0,250	+0,025	+0.010	+0.001	+0,300	0	+0.012	0	+0,1	0,1	+0.004	-0.004
36,512	61,912	1 7/16	2 7/16	+0,300	+0,025	+0.012	+0.001	+0,400	0	+0.016	0	+0,1	0,1	+0.004	-0.004

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3145:1974 https://standards.iteh.ai/catalog/standards/sist/cdcfdc40-d2b1-499f-9aaa-614a99c7e643/iso-3145-1974