FINAL DRAFT

TECHNICAL REPORT

ISO/DTR 8547

ISO/TC 156

Secretariat: SAC

Voting begins on: **2023-10-06**

Voting terminates on: **2023-12-01**

Corrosion of metals and alloys — Exposure test results in the Asian Monsoon region

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 8547

https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/DTR 8547:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 8547
https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Co	ntents	Page				
Fore	eword	iv				
Introduction						
1	Scope					
2	Normative references	1				
3	Terms and definitions					
4	Exposure tests	1				
5	Climatic and environmental conditions ^{[1][2]}					
6	Corrosion behaviours of carbon steel ^{[1][2]}					
	6.1 Corrosion rate (CR[CS])	6 6				
7	Corrosion behaviours of zinc[3]					
	7.1 Comparison with the previous or published study	12				
	7.2 Corrosion rate (CR[Zn])	14 14				
8	Corrosion mapping[2][3]	18				
9	Summary					
Ann	nex A (informative) Data sources	21				
Bibl	liography(Standards ifeh ai)	22				

<u>ISO/DTR 854/</u>

https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 156, Corrosion of metals and alloys.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

At present, the mainstream method of classifying environmental corrosion is that specified in ISO 9223. This is a method in which the corrosion rates of various metals are classified in six levels based on the results of direct exposure tests conducted around the world. However, the exposure sites were located only in Japan for the exposure tests in Asian Monsoon region, in which East-Asia, South-Asia and East-South Asia are included and the climates are affected by monsoons. Thus, standardization of an evaluation/classification method suited to the Asian Monsoon region has been strongly desired. Therefore, exposure tests were conducted in three counties including Japan, Vietnam and Thailand, under the "e-Asia Project".

This document summarizes the exposure test results for carbon steel and galvanized steel sheet.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 8547 https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 8547

https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

Corrosion of metals and alloys — Exposure test results in the Asian Monsoon region

1 Scope

This document provides the data of exposure test results for carbon steel and galvanized steel sheets in three countries, Japan, Vietnam and Thailand, under the "e-Asia Project" as valuable information on the corrosivity of atmospheres in the world.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9223:2012, Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation

ISO 9225:2012, Corrosion of metals and alloys — Corrosivity of atmospheres — Measurement of environmental parameters affecting corrosivity of atmospheres

3 Terms and definitions tandards.iteh.ai)

For the purposes of this document, the terms and definitions given in ISO 9223 and ISO 9225 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

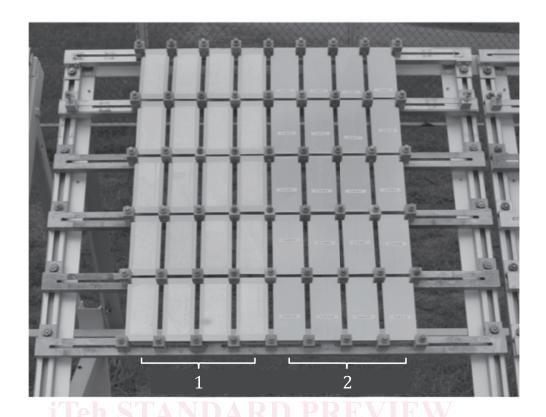
4 Exposure tests

The coupons of carbon steel and galvanized steel sheet were exposed in outdoor environments at 16 exposure test sites in Japan, 13 sites in Vietnam and 7 sites in Thailand as shown in Figure 1. Specimens of 3 mm thickness and are 70 mm × 150 mm of carbon steel and specimens of 1 mm thickness and 70 mm × 150 mm of galvanized steel sheet were used for exposure tests. The specimens of carbon steel were exposed both sides. For the specimens of galvanized steel sheet, the backside and cut edge of the coupons were covered by polyethylene sheet after degreasing the specimen in acetone. The exposed surfaces of specimens were exposed to skyward and groundward as shown in Figure 2. The corrosion products on the exposed specimens were removed by using chemical solutions according to ISO 8407, and the weight losses were measured to determine the corrosion rate.


For the environmental factors, monthly amounts of airborne salinity and SO_2 were measured by "Dry gauze" and "PbO $_2$ cylinder", respectively, based on JIS Z 2382. The temperature, relative humidity, and ACM sensor output, I, were recorded in a microcomputer every 10 min.

For the annual average values of Cl^- deposition, S, and SO_2 deposition, P, those values based on JIS Z 2382, S(JIS) and P(JIS), respectively, were converted to S and P based on ISO 9225:2012, Annex F:

S = 2.4 S(JIS)


P = 0.67P(JIS)

NOTE Some of numerical data are available from data sources given in Annex A.

Key							
J1	Asahikawa	J14	Nishihara	V1	Sơn La	T1	Chaingmai
J2	Akkeshi	J15	Uruma,	V2	Yên Bai	T2	Khon-Kaen
J3	Sapporo	J16	Miyakojima	V3	Cua Ong	Т3	Pathumthani
J4	Niigata			V4	Hà Nội	T4	Bangkok
J5	Fukui			V5	Con Vanh	T5	Chon Buri
J6	Sendai			V6	Đong Hoi	Т6	Rayong
J7	Tsukuba			V7	Dung Quat	T7	Phang Nga
J8	Choshi			V8	Pleiku		
J9	Yamanakako			V9	Phan Rang		
J10	Shimizu			V10	Bien Hoa		
J11	Fukuyama			V11	Can Tho		
J12	Fukuoka			V12	Rach Gia		
J13	Kagoshima			V13	Ca Mau		

Figure 1 — Exposure test sites in Japan, Vietnam and Thailand

Kev

- 1 skyward
- 2 groundward

Figure 2 — Example of exposure test for galvanized steel at Miyakojima

https://standards.iteh.ai/catalog/standards/sist/26f5d8a8-4ea9-41d3-8c0a-2ec0b41d1c0d/iso-dtr-8547

5 Climatic and environmental conditions^{[1][2]}

The average temperature, T, at each site is shown in Figure 3. T value increases in the order Japan

Vietnam

Thailand. In Japan, the lowest T values, in the range of approximately 5 °C to 10 °C, can be seen at the test sites in Northern area or in the mountain (Asahikawa, Akkeshi, Sapporo and Yamanakako), the remain test sites have T of about 13 °C to 24 °C. In Vietnam, the average air temperatures are rather high, except the mountain sites (Tam Dao), almost all Vietnam test sites have T in range of 22 °C to 27 °C. Different from Japan and Vietnam, the air temperature of Thailand is very high with the annual average values of about 28 °C to 30 °C, except one site in the North (Chiengrai) where T is lower (25 °C).

The average relative humidity, RH, at each site is shown in Figure 4. RH of all test sites are rather high, almost all of them have RH \geq 70 %, except several sites with RH < 70 % (as Kagoshima and Miyakojima – Japan, Konken – Thailand), among them, there are many test sites with RH \geq 80 %, especially in some areas, RH values reach approximately 85 % to 90 %.

The total of rainfalls in Asian area are very great as shown in <u>Figure 5</u>. Almost all test sites show the amount of rainfall in the range of approximately 1 000 mm/y to 2 500 mm/y, in particular, there are test sites with very high total of rainfall, approximately 2 500 mm/y to 3 000 mm/y.

<u>Figure 6</u> shows the annual Cl⁻ deposition rate, S, at each site during the exposure period. The inland sites have low S values (< 1 mmd), and the coastal sites have higher S values (> 1 mmd). Depending on the location of the test sites as well as the topography and wind regime, S values at coastal sites have different values in the range of about 1 mmd to 60 mmd. The high S values are observed at Miyakojima and Uruma (which belong to Okinawa island, Japan) and Phang Nga (which belongs to Phuket, Thailand).

Figure 7 shows the annual SO₂ deposition rate, P, at each site during the exposure period. P values at almost all test sites are not significant (< 3 mmd) except only three sites in Thailand, Bangkok, Rayong and Pathumthani.

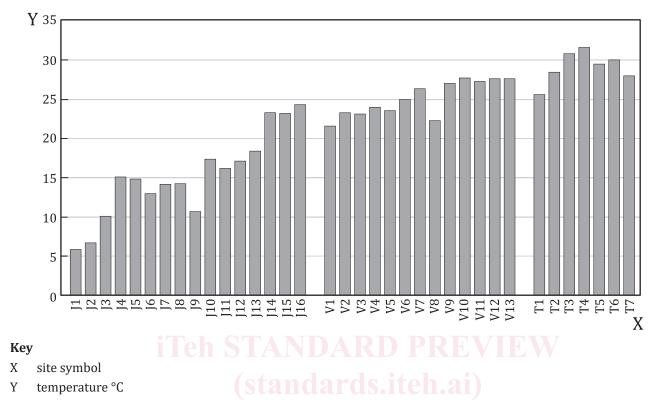


Figure 3 — Average temperature, T, at each site during the exposure period

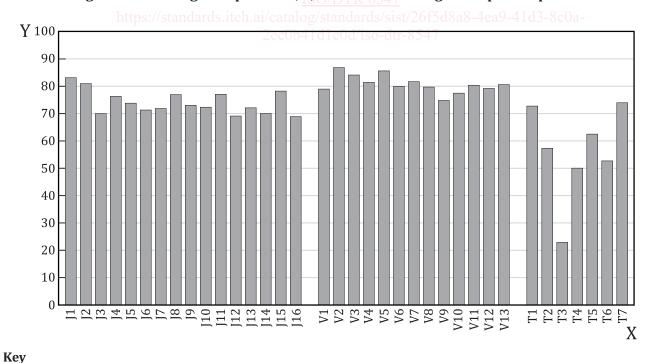
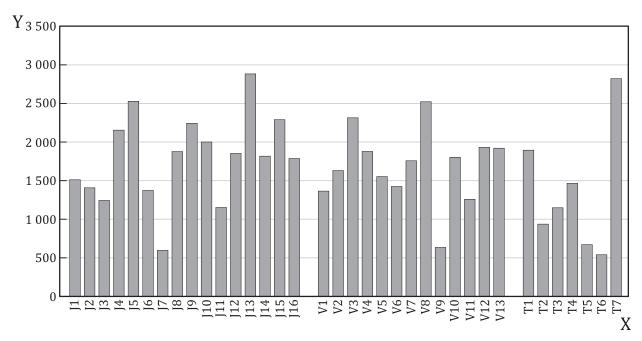
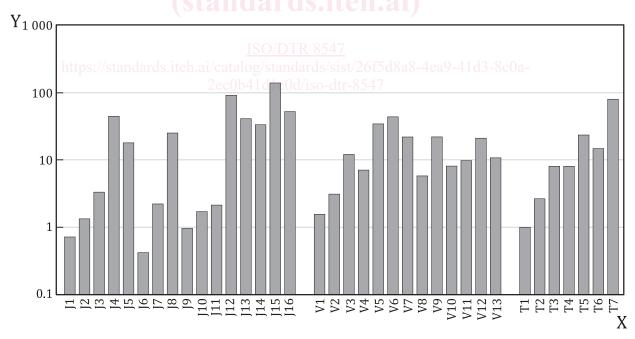



Figure 4 — Average relative humidity, RH, at each site during the exposure period

X

Y

site symbol RH %

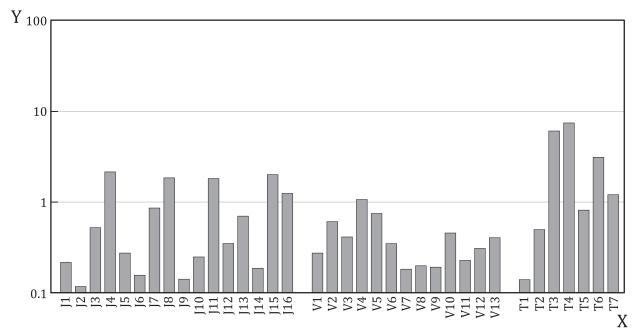


Key

X site symbol

Y rain fall mm/y

Figure 5 — Total of rainfall at each site during the exposure period



Key

X site symbol

Y Cl⁻ deposition rate, S mg/m²/day

Figure 6 — Annual Cl⁻ deposition rate, S, at each site during the exposure period

Key

- X site symbol
- Y SO₂ deposition rate, P mg/m²/day

Figure 7 — Annual SO_2 deposition rate, P, at each site during the exposure period

6 Corrosion behaviours of carbon steel^{[1][2]}

6.1 Corrosion rate (CR[CS])

Figure 8 shows the corrosion rates of carbon steel, CR[CS], after the first one-year exposure. CR values at almost all test sites are categorized to C2 (approximately $10 \text{ g/m}^2/\text{y}$ to $200 \text{ g/m}^2/\text{y}$) or C3 ($200 \text{ g/m}^2/\text{y}$ to $400 \text{ g/m}^2/\text{y}$) except Miyakojima/Japan and Phang Nga/Thailand which are categorized to C4 ($400 \text{ g/m}^2/\text{y}$ to $650 \text{ g/m}^2/\text{y}$).

6.2 Effect of environmental factors on corrosion rate

<u>Figures 9</u> to <u>11</u> show the effects of meteorological factors - temperature, T, RH and rain fall - on corrosion rate of carbon steel, CR[CS]. For the effect of T on CR[CS], ISO 9223 states that CR[CS] value increases with increasing temperature when the temperature is lower than 10 °C, but it decreases with increasing temperature when the temperature is higher than 10 °C. Those behaviours were not observed in Asian area, the CR[CS] value has a peek at around 20 °C as shown in <u>Figure 9</u>. The CR[CS] value increases with increasing rain fall as shown in <u>Figure 11</u>, while the CR[CS] value is not affected by RH as shown in <u>Figure 10</u>.

For the environment factors - annual Cl^- and SO_2 deposition rates, S and P, respectively -, the CR[CS] value increases with increasing S as shown in Figure 12, while it is not affected by P as shown in Figure 13.