INTERNATIONAL STANDARD

ISO 12625-15

Second edition 2022-10

Tissue paper and tissue products —

Part 15:

Determination of optical properties — Measurement of brightness and colour with C/2° (indoor daylight) illuminant

Papier tissue et produits tissue —

Partie 15: Détermination des propriétés optiques — Mesurage du degré de blancheur et de la couleur avec l'illuminant C/2° (lumière du jour à l'intérieur)

ISO 12625-15:2022

https://standards.iteh.ai/catalog/standards/sist/fb02d0b2-e1e2-42ad-80b6-37149509b5bb/iso-12625-15-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12625-15:2022 https://standards.iteh.ai/catalog/standards/sist/fb02d0b2-e1e2-42ad-80b6-37149509b5bb/iso-12625-15-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Coı	ntents	Page
Fore	eword	iv
Intr	oduction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	3
5	Apparatus	
6	Calibration	
7	Sampling	
8	Conditioning	
	_	
9	Preparation of test pieces	
10	Procedure	
	10.1 General	
	10.2 Measurement of ISO brightness	5
	10.3 Measurement of colour (C/2°)	5
11	Calculation	
	11.1 ISO brightness	
	11.2 Colour C/2°	6
	11.2.1 Single values	6
	11.2.2 Mean value	
	11.2.3 Dispersion of the results	7
12	Test report and and sine in air catalogy standards/sisv foot 2002 et e2-42ad-80bo-	7
Ann	nex A (informative) Precision 4950945bb/isa 12625-15-2022	
וטום	liography	10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 6, *Paper, board and pulps*, Subcommittee SC 2, *Test methods and quality specifications for paper and board*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 172, *Pulp, paper and board*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 12625-15:2015), which has been technically revised.

The main changes are as follows:

- removed alternative formulae in <u>11.2.1</u> because they are not relevant for tissue paper;
- updated tables in <u>Annex A</u> to include data to 0,01 and corrected errors in the tables;
- changed C/2° Brightness to ISO Brightness.

A list of all parts in the ISO 12625 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Brightness and colour measurement can be performed under various illumination and observation conditions. This document deals with $C/2^{\circ}$ conditions, which refer to an indoor daylight.

D65/10° conditions (outdoor daylight) are considered in ISO 12625-7. Although both International Standards deal with brightness and colour, results obtained are usually different and do not correlate.

Optical measurements are affected by the geometry of the instruments used and by the texture of the material.

The optical properties are related to the visual appearance of the material in a specified illumination condition. Although optical properties are intrinsic properties of tissue paper, they are not functional properties.

Brightness should not be confused with the optical property called CIE-whiteness, which is based on reflectance data obtained over the full visible spectral range (VIS). In contrast, brightness is limited to the blue region of VIS (visible spectrum).

As preferences for the properties specified can vary by country/market, two other test methods for the determination of optical properties were developed in addition to this document: ISO 12625-7 and ISO 12625-16.

iTeh STANDARD PREVIEW (standards.iteh.ai)

18O 12625-15:2022 https://standards.iteh.ai/catalog/standards/sist/fb02d0b2-e1e2-42ad-80b6 37149509b5bb/iso-12625-15-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

180 12625-15:2022 tps://standards.iteh.ai/catalog/standards/sist/fb02d0b2-e1e2-42ad-80b6

Tissue paper and tissue products —

Part 15:

Determination of optical properties — Measurement of brightness and colour with C/2° (indoor daylight) illuminant

1 Scope

This document specifies testing procedures for the instrumental determination of brightness and colour of tissue paper and tissue products viewed in indoor daylight conditions. It also gives specific instructions for the preparation of test pieces (single-ply, multi-ply products) and for the optical measurements of products, where special precautions can be necessary.

NOTE The properties called D65 brightness and colour are measured with an instrument adjusted to a much higher UV content than that specified in this document.

2 Normative references ANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 186, Paper and board — Sampling to determine average quality

ISO 187, Paper, board and pulps — Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples

ISO 2469, Paper, board and pulps — Measurement of diffuse radiance factor (diffuse reflectance factor)

ISO 2470-1:2016, Paper, board and pulps — Measurement of diffuse blue reflectance factor — Part 1: Indoor daylight conditions (ISO brightness)

ISO 2470-2, Paper, board and pulps — Measurement of diffuse blue reflectance factor — Part 2: Outdoor daylight conditions (D65 brightness)

ISO/CIE 11664-4, Colorimetry — Part 4: CIE 1976 L*a*b* colour space

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

diffuse radiance factor

R

ratio of the radiation reflected and emitted from a body to that reflected from the perfect reflecting diffuser under the same conditions of diffuse illumination and normal detection

Note 1 to entry: The ratio is often expressed as a percentage.

[SOURCE: ISO 2469:2014, 3.2]

3.2

intrinsic diffuse radiance factor

 R_{α}

diffuse radiance factor (3.1) of a layer or pad of material thick enough to be opaque, i.e. such that increasing the thickness of the pad by doubling the number of sheets results in no change in the measured radiance factor

Note 1 to entry: The ratio is often expressed as a percentage.

Note 2 to entry: The radiance factor of a single non-opaque sheet is dependent on the background and is not a material property.

[SOURCE: ISO 2469:2014, 3.3, modified — Note 2 to entry added.]

3.3

reflectance factor

ratio of the radiation reflected by a surface element of a body in the direction delimited by a given cone with its apex at the surface element to that reflected by the perfect reflecting diffuser under the same conditions of illumination

Note 1 to entry: The ratio is often expressed as a percentage.

Note 2 to entry: This term shall only be used when it is known that the test material exhibits no luminescence (fluorescence).

[SOURCE: CIE S 017 ILV:2020, 17-24-070]

3.4

ISO brightness

intrinsic diffuse radiance factor (3.2) measured with a reflectometer having the characteristics described in ISO 2469, equipped with a filter or corresponding function having an effective wavelength of 457 nm (and a half bandwidth of 44 nm), and adjusted so that the UV content of the irradiation incident upon the test piece corresponds to that of the CIE illuminant C

Note 1 to entry: The filter function is described more fully by the weighing function factors given in ISO 2470-1.

3.5

tristimulus values

X, Y, Z

amounts of the reference colour stimuli, in a given trichromatic system, required to match the colour of the stimulus considered

Note 1 to entry: In this document as in ISO 5631-1, the CIE illuminant C and the CIE 1931 (2°) standard observer are used to define the trichromatic system.

Note 2 to entry: No subscript is applied to conform to the CIE convention that tristimulus values have no subscript when the CIE 1931 (2°) standard observer is used [the subscript 10 is applied for tristimulus values that are obtained using the CIE 1964 (10°) standard observer].

[SOURCE: CIE S 017 ILV:2020, 17-23-038]

3.6

C/2° colour

 L^* , a^* , and b^* values of the sample according to the CIELAB 1976 system, described in ISO/CIE 11664-4 corresponding to the CIE illuminant C, described in ISO/CIE 11664-2 and the CIE 1964 standard colorimetric (2°) observer, described in ISO/CIE 11664-1, determined by the measurement under the conditions specified in ISO 5631-1

Note 1 to entry: The quantity L^* is a measure of the lightness of the test piece, where L^* = 0 corresponds to black and L^* = 100 is defined by the perfect reflecting diffuser. Visually, the quantities a^* and b^* represent respectively the red-green and yellow-blue axes in colour space, such that

- a) $+a^*$ is a measure of the degree of redness of the test piece,
- b) $-a^*$ is a measure of the degree of greenness of the test piece,
- c) $+b^*$ is a measure of the degree of yellowness of the test piece, and
- d) $-b^*$ is a measure of the degree of blueness of the test piece.

If both a^* and b^* are equal to zero, the test piece is grey.

4 Principle

A test piece is illuminated diffusely in a standard instrument and the light reflected normal to the surface is either allowed to pass through a defined optical filter, and then measured by a photodetector or measured by an array of photosensitive diodes, where each diode responds to a different effective wavelength. The brightness is then determined directly from the output from the photodetector or by calculation from the photosensitive diode outputs using the appropriate weighting function and colour coordinates are calculated for $C/2^{\circ}$ conditions.

5 Apparatus

<u>180 12625-15:2022</u>

https://standards.iteh.ai/catalog/standards/sist/fb02d0b2-e1e2-42ad-80b6-

- **5.1 Reflectometer or spectrophotometer,** having the geometric, spectral and photometric characteristics described in ISO 2469 and calibrated in accordance with ISO 2469 and ISO 2470-2, and equipped for the measurement of blue reflectance factor.
- **5.1.1** A filter reflectometer, with the radiation falling upon the test piece shall have a UV content corresponding to that of the CIE illuminant C, adjusted or verified by using the fluorescent reference standard (5.2.2).
- **5.1.2** An abridged spectrophotometer, with an adjustable filter with a cut-off wavelength of 395 nm or some other system for adjustment and control, and this filter shall be adjusted or the system shall be calibrated using the fluorescent reference standard (5.2.2), so that the UV content of the illumination falling upon the sample corresponds to that of the CIE illuminant C.

5.2 Reference standard for calibration of the instrument

- **5.2.1 Non-fluorescent reference standard,** for photometric calibration, issued by an ISO 4094 authorized laboratory, in accordance with ISO 2469.
- **5.2.2 Fluorescent reference standard,** for use in adjusting the UV content of the radiation incident upon the sample, having an ISO brightness value assigned by an authorized laboratory as prescribed in ISO 2470-1:2016, Annex B.

5.3 Working standards

5.3.1 Two plates, of flat opal glass, ceramic, or other suitable non-fluorescent material, cleaned and calibrated as described in ISO 2469.

NOTE In some instruments, the function of the primary working standard is taken over by a built-in internal standard.

5.3.2 Black cavity, having a reflectance factor that does not differ from its nominal values by more than 0,2 %, at all wavelengths. The black cavity should be stored upside down in a dust-free environment or with a protective cover.

NOTE The condition of the black cavity can be checked by reference to the instrument maker.

6 Calibration

- **6.1** Using the values assigned to the non-fluorescent reference standard (5.2.1), calibrate the instrument according to the instruments maker's instruction with the UV-cut-off filters removed from the radiation beams. The setting of the UV-adjustment filter is not important at this stage.
- **6.2** Using the appropriate measurement procedure, measure the ISO brightness value of the fluorescent reference standard (5.2.2) and compare the measured ISO brightness value with the ISO brightness value assigned to the fluorescent reference standard.

A measured ISO brightness value higher than that assigned unit indicates that the relative UV-content is too high and vice versa.

- **6.3** Using the UV-adjustment filter or other adjustment device, adjust the UV-content of the illumination until measurement gives the correct ISO brightness value.
- **6.4** Repeat <u>6.1</u>, <u>6.2</u>, and <u>6.3</u> until the correct value for the ISO brightness of the fluorescent reference standard is obtained with the instrument correctly calibrated to the non-fluorescent reference standard. The UV-content is now correctly adjusted with respect to a relative UV-content equivalent to the CIE illuminant C. Record the setting of the UV-adjustment.

NOTE In some instruments, the procedure indicated in <u>6.2</u> to <u>6.4</u> is performed automatically.

6.5 Assign reference values to working standards.

Perform ISO brightness and colour $C/2^{\circ}$ CIE- L^* , a^* , and b^* measurements on the non-fluorescent material (5.3.1). Assign these reference values to the non-fluorescent material as working standard.

This working standard may only be used in the specific instrument in which its value was assigned and shall only be used to monitor changes in the lamps. A new value shall be assigned with a fluorescent reference standard of level 3 (5.2.2), if the lamps are changed or the used working standards show deviations more than 1 brightness unit.

NOTE Instead of using L^* , a^* , b^* values, R_x , R_y , R_z can also be used as assigned reference values.

7 Sampling

If the tests are being made to evaluate a lot, the sample shall be selected in accordance with ISO 186. If the tests are being made on another type of sample, make sure, the specimens taken are representative of the sample received. When sampling finished roll products, eliminate at least the first six layers and the last six layers because of the possible presence of adhesive or mechanical damage.