

International Standard

ISO 9621

Space systems — Methods to decide thermal vacuum test cycles of recurring production according to precipitation efficiency and reliability

Systèmes spatiaux — Méthodes pour déterminer les cycles d'essais sous vide thermique de la production récurrente en fonction de l'efficacité et de la fiabilité des précipitations First edition 2024-05

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 9621:2024

https://standards.iteh.ai/catalog/standards/iso/a5ff1180-3593-4d0d-82f2-7b6da9d6bdd4/iso-9621-2024

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword			
1	Scop	oe	
2	Normative references		1
3	Terms, definitions, and abbreviated terms 3.1 Terms and definitions		
	3.1	Terms and definitions	1
	3.2	Abbreviated terms	2
4	Methods of TVT cycles determination		3
	4.1	General	3
	4.2	Failure data collection and analysis	3
	4.3	Method 1 - Precipitation efficiency method	4
		4.3.1 General	4
		4.3.2 Precipitation efficiency estimation	5
	4.4	Method 2 - Reliability method	6
		4.4.1 General	
		4.4.2 Reliability method	
	4.5	Empirical equivalent fatigue exponent by failure data	7
Annex	x A (ir	nformative) Theory of estimating PE and its lower band limit	9
Annex B (informative) Worked example			11
Ribliography iToh Standards			16

(https://standards.iteh.ai) Document Preview

ISO 9621:2024

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

ISO 9621:2024

Introduction

The thermal vacuum test is one of the most important and expensive environment tests of space systems. The thermal vacuum test is required in general to demonstrate the ability of the test item to meet the design, function and performance requirements under the combination of vacuum conditions and temperature extremes experienced during spaceflight, and to screen out initial failure, known as infant mortality, such as workmanship error, integration error and latent material defect (ISO 15864). The number of thermal cycles, to be referred hence forth as simply cycles, is one of the test conditions in thermal vacuum test, is an essential parameter used to determine the screening effectiveness of initial failure. The number of cycles should be determined, generally based on technical aspects and with careful consideration of various factors such as test item complexity, heritage, and maturity of design and manufacturing, as well as reliability required of the test article. However as experienced in mass production industry, it is a natural expectation that as the design and manufacturing process of an item matures through continuous improvement of the manufacturing process, workmanship defects and initial failure will be reduced.

This document provides two technical methods specified to calculate the precipitation efficiency and reliability by the failure data to measure the quantity of screening effectiveness used to determine number of cycles of thermal vacuum test. These methods can be applied to reduce the number of cycles performed during a thermal vacuum test specified for recurring production of flight hardware, such as higher volume unit production runs and hardware produced for large constellation programs. This document supplements ISO 15864 used as either an option to reduce or a tailoring method to the baseline of thermal vacuum and thermal cycle acceptance tests specific for the recurring production hardware.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 9621:2024

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 9621:2024

Space systems — Methods to decide thermal vacuum test cycles of recurring production according to precipitation efficiency and reliability

1 Scope

This document provides technical methods to calculate the precipitation efficiency and liability of a flight model by measuring the screening effectiveness of thermal cycles. This document is applicable to the recurring production unit and other hardware assembly levels, as either an option to reduce or a method to tailor the baseline number of cycles for thermal vacuum and thermal cycle acceptance tests.

2 Normative references

The following documents are referred to in the text in such a way that some or all content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15864, Space systems — General test methods for spacecraft, subsystems and units

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 15864 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1.1

failure

termination of the ability of an *item* (3.1.5) to perform a required function

[SOURCE: ISO 10795:2019, 3.98]

3.1.2

flight model

model dedicated to being launched and operated in orbit and subjected to acceptance testing

3.1.3

hardware

items (3.1.5) of identifiable equipment including piece parts, components, assemblies, subsystems and systems

[SOURCE: ISO 10795:2019, 3.119, modified — The abbreviated term "H/W" has been removed.]

3.1.4

initial failure

probability of failure (3.1.1) or defect under an environmental test

3.1.5

item

node of a product breakdown structure

Note 1 to entry: An item can be any functional unit, subsystem, or system in ISO 15864 that can be individually considered.

Note 2 to entry: An item can be considered either as a "product" or a "component" on a "product breakdown structure" of more than two levels of decomposition. Items are designated "products" when described as being decomposed and designated "components" when described as decompositions.

[SOURCE: ISO 10795:2019, 3.134, modified — The domain "<space system>" has been removed; in note 1 to entry, a reference has been made to ISO 15864.]

3.1.6

latent defect

defect caused by workmanship error, integration error or latent material, which is not detectable in a stress-free environment, but is either screened under environmental test conditions or flight environment

3.1.7

precipitation efficiency

PF

probability of screening out *latent defects* (3.1.6) in a specific environmental test

3.1.8

reliability

ability of an *item* (3.1.5) to perform as required under given conditions for a given time interval

Note 1 to entry: In this document, reliability is equivalent to the probability that the *hardware* (3.1.3) is failure-free.

[SOURCE: ISO 10795:2019, 3.198, modified — "a required function" has been replaced by "as required"; the original two notes to entry have been replaced by a new one.]

3.1.9

tailoring

process by which individual requirements of specifications, standards, and related documents are evaluated and made applicable to a specific project by selection and, in some exceptional cases, modification of existing or addition of new requirements

[SOURCE: ISO 10795:2019, 3.237]

3.1.10

test temperature range

difference between the maximum and minimum temperatures in a thermal vacuum test

Note 1 to entry: The thermal vacuum test is specified in ISO 15864:2021, 7.18.

3.2 Abbreviated terms

AT acceptance test

MPE maximum predicted environment

PE precipitation efficiency

TCT thermal cycle test

TESS thermal environmental stress screening

TTC telemetry, tracking and command

TVT thermal vacuum test

4 Methods of TVT cycles determination

4.1 General

Thermal cycle and thermal vacuum tests (TVT) are required for system and certain types of subsystem/ unit acceptance test (AT), as specified in ISO 15864:2021, Table 1 and Table 3. The number of cycles is determined in general by consideration of the overall development and test history of the hardware under test, for example, the complexity and heritage of design and tests of lower-level assemblies before integrated assemblies, TVT conditions such as temperature range and duration. Initial screening for latent defects of flight hardware, also called infant mortality, which is caused by manufacturing, material and workmanship defects, shall be demonstrated by the acceptance test. The determination of TVT cycles depends on the essential parameter used to measure the screening effectiveness for initial latent defects by the precipitation efficiency and reliability of the test. Although in ISO 15864 there is no statement for the value of number of cycles, the expected number of cycles for thermal environmental stress screening (TESS) is determined by the required precipitation efficiency (PE) and temperature range in TVT^{[1],[2]}.

The number of TVT cycles for the relevant kinds of hardware (system, subsystem and unit) of recurring production can be tailored to reduce the number of cycles specified in baseline requirement by prior experience and studies of the failure database. This document provides the technical methods to support tailoring thermal vacuum test cycles of the relevant hardware. Methods used to calculate the precipitation efficiency and reliability are used to measure the quantity of the TESS effectiveness, by the priorly revealed failure database collected from the objective hardware. The failure database used in these methods shall support the justification of number of cycles determination.

The term of recurring production stated herein shall be replaced by spacecraft, subsystem or unit defined in ISO 15864 in case of tailoring the baseline of thermal vacuum and thermal cycle acceptance tests. Recurring production can be hardware used for constellation programs, or more generally, the hardware made with a constant block of design and manufacture, such as mass production hardware, replicating manufactured hardware.

The failure database may be extended to the hardware that has similarity in design, manufacture and part grade integrated in the production, but the technical rationale of supporting the similarity claim shall be justified. An example to support similarity can be when the hardware is designed and manufactured by relative standards, reliability and quality control by same management standards, high class parts (e.g. class I) are used in the hardware 3.

4.2 Failure data collection and analysis

The failure distribution function is used for estimating TESS effectiveness by the fatigue induced stress. Failure data collected shall be revealed that failures are relevant to initial defects due to foreign substance contamination in manufacturing and workmanship of the relevant hardware. Failure data collection at acceptance TVT shall provide the following basic information.

- a) The cycle numbers and test parameters, including minimum and maximum temperatures, in the TVT when the failure occurred. The minimum temperature of failure data collected should be $55\,^{\circ}$ C.
- b) The results from function tests performed. A function test shall be performed during and after exposure to the TVT environment to ensure the perceptiveness of potential failures. In cases that failures are discovered after exposing to TVT environment and the cycles when the failure occurred are difficult to be identified, an increased number of cycles should be assigned. This assignment of increased cycles is to obtain a conservative estimation.
- c) Failure data from previous and/or follow-on environmental tests. If the hardware is exposed to a number of environments sequential, for example, a vibration environment could be exposed on the hardware before or after TVT, the failure data collected shall be carefully analysed. Failures escaping from a previous exposure environment or into a follow-on exposed environment shall be carefully analysed to confirm if there are TVT environment related failures. If the failure related environment is indistinct, this kind of failure data shall not be included.

- d) Failure data from different lot tests. If the failure data are collected from different lots or replicating manufactured hardware, the failure data should be carefully analysed to determine if there are different number of failure cycles between lots or replicating hardware. Test parameters to influence the TESS, such as temperature range, temperature transition rate, hardware operation, failure modes, should be carefully examined.
- e) Failure data from thermal cycle tests (TCT). Thermo-mechanical fatigue failures in TCT may be included in the failure database.

Typical failure data and initial defects of electronic units are shown in <u>Table B.1</u>.

The collected failure data shall be sorted in ascending order by the cycle number x when the failure is discovered and their corresponding test temperature range ΔT . If there are k failures, the failure data shall be sorted to,

$$x = (x_1, x_2, \dots, x_k) \tag{1}$$

$$\Delta T = (\Delta T_1, \Delta T_2, \dots, \Delta T_k) \tag{2}$$

where

 x_i is the cycle number when the failure is discovered; i is the index of ith failure;

 ΔT_i is the TVT temperature range corresponding to the i^{th} failure.

If there are different TVT temperature ranges, temperature effect shall be considered by normalizing equivalent fatigue with the low-cycle fatigue equivalence. The equivalent temperature normalized cycle number x' shall be decided by Formula (3).

$$x' = (x'_1, x'_2, \dots, x'_k) = \left(x_1 \left(\Delta T_1 / \Delta T'\right)^b, x_2 \left(\Delta T_2 / \Delta T'\right)^b, \dots, x_k \left(\Delta T_k / \Delta T'\right)^b\right)$$
(3)

where

b is the low-cycle fatigue equivalent exponent value;

 $\Delta T'$ is the reference test temperature range in the TVT for equivalent temperature normalization; the minimum reference temperature for normalization shall be 55 °C.

Fatigue equivalent exponent b shall be determined by the material and failure mode of the test hardware. b = 2 is recommended for solder joint, which is widely used for electric unit. [5] Empirically equivalent value comprising multiple failure modes, and materials should be calculated following the method in 4.4.

NOTE Examples of electric unit failure data related to manufacturing, material and workmanship defects, and cycle number that the failure occurred, normalized cycles number at reference temperature 85 °C using b = 2, are shown in Table B.2.

4.3 Method 1 - Precipitation efficiency method

4.3.1 General

The PE method is used to calculate probability of screening latent defects versus the number of cycles with the collected TVT failure database specified in 4.2. PE value calculated by this method shall be used to demonstrate the compliance with the relevant precipitation requirement designated by the customer and support the justification for execution of the option to reduce or a tailoring method to the baseline of thermal vacuum. PE value should be set to 0,95 for the acceptance thermal test^[6].