

FINAL DRAFT Technical Specification

ISO/DTS 13329

Nanomaterials — Preparation of safety data sheets (SDS)

Nanomatériaux — Préparation des fiches de données de sécurité (FDS)

(https://standards.iteh Document Preview

ISO/TC 229

Secretariat: BSI

Voting begins on: **2024-06-26**

Voting terminates on: 2024-08-21

SO/DTS 13329

https://standards.iteh.ai/catalog/standards/iso/37831e03-751b-426d-8329-88aa00977d63/iso-dts-13329

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/DTS 13329

https://standards.iteh.ai/catalog/standards/iso/37831e03-751b-426d-8329-88aa00977d63/iso-dts-13329

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org

Website: <u>www.iso.org</u> Published in Switzerland

Contents				Page	
Fore	Foreword				
Introduction			v		
1	Scop	e		1	
2	Nori	native r	eferences	1	
3	Terms and definitions			1	
4	SDS preparation			5	
	4.1	Genera	al	5	
	4.2	Conte	nt and general layout of an SDS	6	
		4.2.1	Chemical product and company identification	6	
		4.2.2	Hazard identification	6	
		4.2.3	Composition of ingredients and related information	6	
		4.2.4	First-aid measures	7	
		4.2.5	Fire-fighting measures	7	
		4.2.6	Accidental release measures	7	
		4.2.7	Handling and storage	8	
		4.2.8	Exposure controls and personal protection		
		4.2.9	Physical and chemical properties	10	
		4.2.10	Stability and reactivity	11	
		4.2.11	Toxicological information	11	
			Ecological information		
			Disposal considerations.		
		4.2.14	Transportation information	12	
		4.2.15	Regulatory information	13	
		4.2.16	Other information S12 MO 2 MOS 114 M 21	13	
5	Cut-off values and concentration limits			13	
Annex A (informative) Example measurement methods and standards (ISO/TR 13014)				14	
Ribliography				20	

https://standards.iteh.ai/catalog/standards/iso/37831e03-751b-426d-8329-88aa00977d63/iso-dts-13329

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee 229 Nanotechnologies.

This second edition cancels and replaces the first edition (ISO/TR 13329:2012), which has been technically revised.

The main change is as follows:

— The document has been changed to a Technical Specification. 26d-8329-88aa00977d63/iso-dts-13329

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Manufactured nanomaterials are defined as materials that are intentionally produced to have specific properties or a specific composition and which have any external dimension in the nanoscale or internal structure or surface structure in the nanoscale. This document is not a stand-alone document and should be used in conjunction with ISO 11014.^[1] This document takes into account the *Globally harmonized system of classification and labelling of chemicals (GHS)* document on hazard communication, i.e. safety data sheets. The GHS was developed by the United Nations and is being incorporated into the laws of various regions and nations, many of which already have laws that govern the preparation of SDSs.

Currently, there is limited information on the possible hazards of some nanomaterials. In some cases, the degree of risk to workers or others who can be exposed to nanomaterials is partly unknown, as the possible toxicological effects of nanomaterials are not yet well known and exposure is difficult to measure. Most hazard information and communication approaches necessitate preparation of an SDS for hazardous chemicals, including those containing nanomaterials, for use in manufacture, storage, transport or other occupational handling activities. Yet, only a few SDSs contain specific information about nanomaterials or are specific to nanomaterials. Those that exist generally provide insufficient hazard information (see Reference [2]). There is evidence that some nanomaterials can be more hazardous, e.g. more bio-reactive or active, leading to higher toxicity, than the same material in bulk (non-nanoscale) form. Characteristics predictive of potential safety issues or toxicity for manufactured nanomaterials need to be determined and included in the preparation of an SDS. Within the European Union and the UK, the legislation that addresses industrial substances including nanomaterials specifies that hazardous substances and mixtures are accompanied by an SDS when placed on the market.

The most fundamental ethical responsibility faced by manufacturers is to make users aware that nanomaterials have been added to a product and to communicate, in an SDS, the hazards the product can present and the most effective ways to mitigate those hazards, relying on the hierarchy of controls. The hierarchy of controls is a method that is found in nearly every international guidance document on responsible management of nanomaterials. This document considers the precautionary approach in terms of toxicity and other risks associated with nanomaterials. It recommends providing an SDS for nanomaterials and nanomaterial-containing products, regardless of whether or not the material is classified as hazardous, unless there are existing data for the nanomaterial which demonstrates that it is non-hazardous, or if it is not envisaged that they can be released as nano-objects, or their agglomerates and aggregates greater than 100 nm (NOAA), during handling or use.

https://standards.iteh.ai/catalog/standards/iso/3/831e03-/51b-426d-8329-88aa009//d63/iso-dts-13329

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/DTS 13329

https://standards.iteh.ai/catalog/standards/iso/37831e03-751b-426d-8329-88aa00977d63/iso-dts-13329

Nanomaterials — Preparation of safety data sheets (SDS)

1 Scope

This document provides guidance on the development of content for, and consistency in, the communication of information on safety, health and environmental matters in safety data sheets (SDS) for substances classified as manufactured nanomaterials (and materials or products that contain manufactured nanomaterials). It provides additional information on safety issues associated with manufactured nanomaterials. It provides supplemental guidance to ISO 11014 $\frac{11}{2}$ on the preparation of SDSs.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/FDIS 80004-1, Nanotechnologies - Vocabulary - Part 1: Core vocabulary

Globally harmonized system of classification and labelling of chemicals (GHS). United Nations Economic Commission for Europe, Fourth Edition, 2011

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 80004-1, GHS 2011 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp 29-88aa00977d63/iso-dis-13329
- IEC Electropedia: available at https://www.electropedia.org/

3.1

agglomerate

collection of weakly bound particles or aggregates or mixtures of the two where the resulting external surface area is similar to the sum of the surface areas of the individual components

Note 1 to entry: The forces holding an agglomerate together are weak forces, for example van der Waals forces or simple physical entanglement.

Note 2 to entry: Agglomerates are also termed secondary particles and the original source particles are termed primary particles.

[SOURCE: ISO 80004-1:2023, 3.2.4]

3.2

aggregate

particle comprising strongly bonded or fused particles where the resulting external surface area is significantly smaller than the sum of surface areas of the individual components

Note 1 to entry: The forces holding an aggregate together are strong forces, for example covalent bonds, or those resulting from sintering or complex physical entanglement.

Note 2 to entry: Aggregates are also termed secondary particles and the original source particles are termed primary particles.

[SOURCE: ISO 80004-1:2023, 3.2.5]

3.3

bioaccumulation

process of accumulation of a substance in organisms or parts thereof

[SOURCE: ISO 6107:2021, 3.64]

3.4

biodurability

physicochemical property which depends on dissolution and leaching as well as mechanical breaking and splitting of a material in a physiological solution such as a Gamble solution

Note 1 to entry: The biodurability test is usually performed *in vitro*.

3.5

biopersistence

ability of a material to persist in a tissue in spite of the tissue's physiological clearance mechanisms and environmental conditions

[SOURCE: EU R 18748:1999, 1.2, modified — The word "fibre" has been removed and the word "lung" replaced by "tissue".]

3.6

biodegradability

susceptibility of an organic substance to biodegradation

[SOURCE: ISO 6107:2021, 3.68]

iTeh Standards

3.7

chemical product

substance or mixture

[SOURCE: ISO 11014:2009, 3.1] Document Preview

3.8

crystallinity

ISO/DTS 13329

presence of three-dimensional order at the level of molecular dimensions 29-88aa00977d63/iso-dts-13329

[SOURCE: ISO 472:2013, 2.240]

3.9

dustiness

propensity of materials to produce airborne dust during handling

Note 1 to entry: Dustiness is not an intrinsic property as it depends on how it is measured.

[SOURCE: EN 1540:2021, 3.1.2.9]

3.10

engineered nanomaterial

nanomaterial designed for a specific purpose or function

[SOURCE: ISO 80004-1:2023, 3.1.8]

3.11

hazard class

nature of the physical, health or environmental hazard as used in GHS

[SOURCE: GHS:2011, Chapter 1.2, modified — Examples removed from definition and "as used in GHS" added.]

3.12

hazard statement

statement assigned to a hazard class and category as used in GHS that describes the nature of the hazards of a hazardous substance or mixture, including, where appropriate, the degree of hazard

[SOURCE: ISO 11014:2009, 3.6, modified — "Hazardous product" replaced with "hazardous substance or mixture" and "as used in GHS" added.]

3.13

incidental nanomaterial

nanomaterial generated as an unintentional by-product of a process

Note 1 to entry: The process includes manufacturing, biotechnological or other processes, including natural processes.

Note 2 to entry: Used as a synonym for "ultrafine particle" in ISO/TR 27628:2007.

[SOURCE: ISO 80004-1:2023, 3.1.10]

3.14

manufactured nanomaterial

nanomaterial intentionally produced to have specific properties or specific composition

[SOURCE: ISO 80004-1:2023, 3.1.9, modified — "Selected properties or composition" replaced with "specific properties or specific composition".]

3.15

mixture

mixture or solution composed of two or more substances in which they do not react

[SOURCE: GHS:2011, Chapter 1.2] https://standards.iteh.ai)

3.16

nanofibre

nano-object with two similar external dimensions in the nanoscale and the third dimension significantly larger

Note 1 to entry: The largest external dimension is not necessarily in the nanoscale.

[SOURCE: ISO 80004-1:2023, 3.3.5] tandards/iso/37831e03-751b-426d-8329-88aa00977d63/iso-dts-13329

3.17

nanomaterial

material with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale

Note 1 to entry: This generic term is inclusive of nano-object and nanostructured material.

Note 2 to entry: See also engineered nanomaterial, manufactured nanomaterial and incidental nanomaterial.

[SOURCE: ISO 80004-1:2023, 3.1.4, modified — Notes to entry have been changed.]

3.18

nano-object

discrete piece of material with one, two or three external dimensions in the nanoscale

[SOURCE: ISO 80004-1:2023, 3.1.5]

3.19

nanoparticle

nano-object with all three external dimensions in the nanoscale

Note 1 to entry: If the dimensions differ significantly (typically by more than three times), terms such as nanofibre or nanoplate are preferred to the term nanoparticle.

[SOURCE: ISO 80004-1:2023,. 3.3.4]

3.20

nanopowder

particulate material only composed of nano-objects

Note 1 to entry: Nanopowder can include agglomerates and/or aggregates in the nanoscale (largest dimension \leq 100 nm).

[SOURCE: ISO 18451-1:2019, 3.85]

3.21

nanoscale

length range approximately from 1 nm to 100 nm

[SOURCE: ISO 80004-1:2023, 3.1.1]

3.22

nanostructure

surface or internal feature with one or more dimensions in the nanoscale

Note 1 to entry: A feature includes but is not limited to nano-objects, structures, morphologies or other identifiable areas of nanoscale dimensions. For example, the nanostructure can be a nanopore or a solid feature on an object.

[SOURCE: ISO 80004-1:2023, 3.1.6]

3.23

nanostructured material

material having internal nanostructure or surface nanostructure

Note 1 to entry: This definition does not exclude the possibility for a nano-object to have internal structure or surface structure. If external dimensions are in the nanoscale, the term nano-object is recommended.

[SOURCE: ISO 80004-1:2023, 3.1.7] DS://Standards.iteh.ai)

3.24

particle

minute piece of matter with defined physical boundaries

Note 1 to entry: A physical boundary can also be described as an interface. $\frac{1}{1000} = \frac{1}{1000} = \frac{1}$

Note 2 to entry: This general particle definition applies to nano-objects.

[SOURCE: ISO 26824:2022, 3.1.1, modified — A note to entry has been deleted.]

3.25

primary particle

original source particle of agglomerates or aggregates or mixtures of the two

Note 1 to entry: *Constituent particles* of agglomerates or aggregates at a certain actual state can be primary particles, but often the constituents are aggregates.

Note 2 to entry: Agglomerates and aggregates are also termed secondary particles.

[SOURCE: ISO 26824:2022, 3.1.4]

3.26

safety data sheet

SUS

document specifying the properties of a substance, its potential hazardous effects for humans and the environment, and the precautions necessary to handle and dispose of the substance safely

[SOURCE: ISO 11139:2018, 3.239]