INTERNATIONAL STANDARD

ISO 6508-3

Fourth edition 2023-12

Metallic materials — Rockwell hardness test —

Part 3: Calibration of reference blocks

Matériaux métalliques — Essai de dureté Rockwell — Partie 3: Étalonnage des blocs de référence

(https://standards.iteh.ai) **Document Preview**

ISO 6508-3:2023

https://standards.iteh.ai/catalog/standards/sist/255e63fe-8672-45df-9c40-c54bd4a08088/iso-6508-3-2023

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 6508-3:2023

https://standards.iteh.ai/catalog/standards/sist/255e63fe-8672-45df-9c40-c54bd4a08088/iso-6508-3-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

ii

COI	contents		
Fore	eword	iv	
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Manufacture of reference blocks	1	
5	Calibration machine and calibration indenter 5.1 General	2 3 4	
6	Reference block calibration procedure	6	
7	Number of indentations	7	
8	Uniformity of hardness	7	
9	Marking	8	
10	Calibration certificate	8	
11	Validity <u>iTah Standards</u>	8	
Ann	ex A (informative) Uniformity of reference blocks	9	
	ex B (informative) Uncertainty of the mean hardness value of hardness-reference blocks		
Ann	ex C (normative) Requirements for reference diamond indenters	16	
Ann	ex D (normative) Control verification of the calibration machine	17	
	iography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 3, *Hardness testing*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 459, *ECISS - European Committee for Iron and Steel Standardization*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This fourth edition cancels and replaces the third edition (ISO 6508-3:2015), which has been technically revised.

The main changes are as follows:

- removed all statements of requirements, permissions, and recommendations from the Scope of the document (<u>Clause 1</u>);
- addition of <u>Clause 3</u>, Terms and definitions;
- modification of the requirements for the calibration and verification of the machine and indenter (Clause 5);
- added a performance verification for the calibration machine and indenter (<u>Clause 5</u>);
- added a requirement to conduct a control verification prior to the calibration of reference blocks (<u>Clause 6</u>);
- added a normative <u>Annex D</u> for the control verification of the calibration machine (<u>Annex D</u>).

A list of all parts in the ISO 6508 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html

Metallic materials — Rockwell hardness test —

Part 3:

Calibration of reference blocks

1 Scope

This document specifies a method for the calibration of reference blocks to be used for the indirect and daily verification of Rockwell hardness testing machines and indenters, as specified in ISO 6508-2. This document also specifies requirements for Rockwell machines and indenters used for calibrating reference blocks and specifies methods for their calibration and verification.

Attention is drawn to the fact that the use of hard metal for ball indenters is considered to be the standard type of Rockwell indenter ball.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 376, Metallic materials — Calibration of force-proving instruments used for the verification of uniaxial testing machines

ISO 6508-1:2023, Metallic materials — Rockwell hardness test — Part 1: Test method

ISO 6508-2:2023, Metallic materials — Rockwell hardness test — Part 2: Verification and calibration of testing machines and indenters

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4 Manufacture of reference blocks

4.1 The block shall be specially manufactured for use as a hardness-reference block.

NOTE Attention is drawn to the need to use a manufacturing process, which will give the necessary homogeneity, stability of structure, and uniformity of surface hardness.

- **4.2** Each hardness reference block shall be of a thickness not less than 6 mm. To minimize the effect of hardness change with increasing number of indents, thicker blocks should be used.
- **4.3** The reference blocks shall be free of magnetism. It is recommended that the manufacturer ensures that the blocks, if made of steel, have been demagnetized at the end of the manufacturing process (before calibration).

- **4.4** The deviation from surface flatness of the top and bottom surfaces shall be ≤ 0.01 mm. The bottom of the blocks shall not be convex. The deviation from parallelism of the top and bottom surfaces shall be ≤ 0.02 mm per 50 mm.
- **4.5** The test surface and bottom surface shall be free from damage, such as notches, scratches, oxide layers, etc., which can interfere with the measurement of the indentations. The surface roughness, Ra, shall not exceed 0,3 μ m for the test surface and 0,8 μ m for the bottom surface. Sampling length is l = 0,8 mm (see ISO 4287:1997, 3.1.9).
- **4.6** To verify that no material is subsequently removed from the reference block, the thickness at the time of calibration shall be marked on it, to the nearest 0,1 mm, or an identifying mark shall be made on the test surface [see 9.1 e)].

5 Calibration machine and calibration indenter

5.1 General

- **5.1.1** Calibrations and verifications of Rockwell calibration machines and calibration indenters shall be carried out at a temperature of (23 ± 5) °C.
- **5.1.2** The instruments used for calibration and verification shall be traceable to national standards.

5.2 Direct verification of the calibration machine

- **5.2.1** In addition to fulfilling the conditions in ISO 6508-2:2023, Clause 4, the calibration machine shall also meet the requirements given in 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6 and 5.2.7 determined by the procedures specified in ISO 6508-2:2023, Clause 5.
- **5.2.2** The machine shall be directly verified annually, not to exceed 13 months. Direct verification involves calibration and verification of the following: $_{6.76-8672-45df-9c40-c54bd4a08088/jso-6508-3-2023}$
- a) test force;
- b) measuring system;
- c) testing cycle; if this is not possible, at least the force versus time behaviour.
- d) machine hysteresis test.
- **5.2.3** The test force shall be measured by means of an elastic proving device (according to ISO 376) class 0,5 or better and calibrated for reversibility, or by another method having the same or better accuracy.

Evidence should be available to demonstrate that the output of the force-proving device does not vary by more than 0,1 % in a period of 1 s to 30 s, following a stepped change in force.

- **5.2.4** Each test force shall be measured and shall agree with the nominal preliminary test force, F_0 , to within ± 0.2 % and the nominal total test force, F, to within ± 0.1 %.
- **5.2.5** The measuring system shall have a resolution of $\pm 0,000$ 1 mm and a maximum expanded uncertainty of 0,000 2 mm, when calculated with a confidence level of 95 % over its working range.
- **5.2.6** The testing cycle shall be timed with an uncertainty less than ± 0.5 s and shall conform to the testing cycle of <u>Clause 6</u>.

5.2.7 The average of the last three tests when evaluating the hysteresis of the calibration machine shall indicate a hardness number of (130 \pm 0,5) Rockwell units when the regular Rockwell ball scales B, E, F, G, H, and K are used, or within (100 \pm 0,5) Rockwell units when any other Rockwell scale is used.

5.3 Calibration diamond indenter

5.3.1 The geometric shape and performance of calibration diamond indenters shall be calibrated as specified below. Direct verification of the geometric shape shall be made before first use. The condition of the diamond shall be checked at frequent intervals using appropriate optical devices (microscope, magnifying glass, etc.) as specified in ISO 6508-1:2023, Annex F.

Verification of the indenter performance, as specified in <u>5.3.3</u>, shall be made before first use and annually, not to exceed 13 months.

- **5.3.2** The diamond indenter shall be measured on at least eight unique axial section planes equidistant from each other (e.g. the eight cross-sections will be spaced approximately 22,5° apart at 0° , 22,5°, 45°, 67,5°, 90°, 112,5°, 135°, 157,5°), and shall meet the following requirements.
- a) The cone angle shall be measured adjacent to the blend. The diamond cone shall have a mean included angle of $(120 \pm 0.1)^{\circ}$. In each measured axial section, the included angle shall be $(120 \pm 0.17)^{\circ}$.
- b) The mean deviation from straightness of the generatrix of the diamond cone adjacent to the blend shall not exceed 0,000 5 mm over a minimum length of 0,4 mm. In each measured section, the deviation shall not exceed 0,000 7 mm.
- c) The radius of the spherical tip of the diamond shall be measured adjacent to the blend. The tip shall have a mean radius of $(0,200 \pm 0,005)$ mm. In each measured section, the radius shall be within $(0,200 \pm 0,007)$ mm and local deviations from a true radius shall not exceed 0,002 mm.
- NOTE The tip of the diamond indenter is usually not truly spherical, but often varies in radius across its surface. Depending on the crystallographic orientation of the diamond stone with respect to the indenter axis, diamond tends to preferentially polish away more easily or with more difficulty at the tip, producing https://stan increasingly flat or sharp surface in the central indenter axis region. The sphericity of the diamond tip can be better evaluated by measuring multiple measurement windows of varying width. The measurement window would be bounded by widths measured along a line normal to the indenter axis. For example, the following window sizes can be evaluated:
 - between ±80 μm from the indenter axis;
 - between ±60 μm from the indenter axis;
 - between $\pm 40 \mu m$ from the indenter axis.
 - d) The surfaces of the cone and the spherical tip shall blend in a smooth tangential manner. The location where the spherical tip and the cone of the diamond blend together will vary depending on the values of the tip radius and cone angle. Ideally for a perfect indenter geometry, the blend point is located at 100 μ m from the indenter axis measured along a line normal to the indenter axis. To avoid including the blend area in the measurement of the tip radius and cone angle, the portion of the diamond surface between 90 μ m and 110 μ m should be ignored.
 - e) The inclination of the axis of the diamond cone to the axis of the indenter holder (normal to the seating surface) shall be within 0,3°.
 - **5.3.3** Calibration diamond indenters shall be performance verified by performing comparison tests with reference diamond indenter(s) that meet the requirements of <u>Annex C</u>. Calibration diamond indenters can be verified for use on either regular or superficial Rockwell diamond scales or both. The test blocks used for the comparison testing shall meet the requirements of <u>Clause 4</u> and be calibrated at the hardness levels given in <u>Table 1</u>, <u>Table 2</u>, <u>Table 3</u>, or <u>Table 4</u>, depending on the scales for which the indenter is verified. The testing shall be carried out in accordance with ISO 6508-1.

NOTE The alternate hardness levels given in <u>Table 2</u> are provided to accommodate indenters calibrated to other International Standards. It is believed that calibrations conducted to <u>Table 1</u> or <u>Table 2</u> will yield equivalent results.

For each block, the mean hardness value of three indentations made using the calibration diamond indenter to be verified shall not differ from the mean hardness value of three indentations obtained with a reference diamond indenter by more than ± 0.4 Rockwell units. The indentations made with the calibration diamond indenter to be verified and with the reference diamond indenter should be adjacent.

Table 1 — Hardness levels for indenters to be used for calibrating Rockwell regular and superficial scale test blocks (A, C, D, and N)

Scale	Nominal hard- ness	Ranges
HRC	23	20 to 26
HRC	55	52 to 58
HR45N	43	40 to 46
HR15N	91	88 to 94

Table 2 — Alternate hardness levels for indenters to be used for calibrating Rockwell regular and superficial scale test blocks (A, C, D, and N)

Scale 1	Nominal hard- ness	Ranges
HRC	25	22 to 28
HRC	63441	60 to 65
HR30N	64 + D	60 to 69
HR15N	91	88 to 94

Table 3 — Hardness levels for indenters to be used for calibrating Rockwell regular scale test https://standards.iteh.ai/catalog/stanblocks only (A, C, and D) 45 df-96 40-65 4b d4 a0 80 88/iso-65 08-3-2023

Scale	Nominal hard- ness	Ranges
HRC	25	22 to 28
HRC	45	42 to 50
HRC	63	60 to 65
HRA	81	78 to 84

Table 4 — Hardness levels for indenters to be used for calibrating Rockwell superficial scale test blocks only (N)

Scale	Nominal hard- ness	Ranges
HR15N	91	88 to 94
HR30N	64	60 to 69
HR30N	46	42 to 50
HR45N	25	22 to 29

5.4 Calibration ball indenter

5.4.1 The calibration tungsten carbide composite ball shall be replaced at a frequency no greater than 13 months.

- **5.4.2** Calibration tungsten carbide composite balls shall meet the requirements of ISO 6508-2, with the exception of the following tolerances for the ball diameter:
- ±0,002 mm for the ball of diameter 1,587 5 mm;
- ±0,003 mm for the ball of diameter 3,175 mm.

5.5 Performance verification of the calibration machine and indenter

- **5.5.1** Performance verification involves verification of the calibration machine with the calibration indenter by performing comparisons with laboratories having measurement capabilities with lower or equivalent uncertainties. The comparisons shall be made by one or more of the following procedures:
- tests on primary reference blocks calibrated by National Metrology Institutes;
- intercomparisons with National Metrology Institutes;
- intercomparisons with other Rockwell calibration laboratories having lower or equivalent stated measurement uncertainties, such as part of a Proficiency Testing (PT) program.
- **5.5.2** The calibration laboratory shall schedule the performance verification comparisons such that, at a minimum, the following number of Rockwell scales are compared during each performance verification interval depending on the reference blocks calibrated by the laboratory. Comparisons are only required for the scales that blocks will be calibrated in the future.
- One (1) regular Rockwell diamond scale (A, C, D)
- One (1) superficial Rockwell diamond scale (15N, 30N, 45N)
- One (1) 1,587 5 mm ball scale (B, F, G) Preview
- One (1) 3,175 mm ball scale (E, H, K)
- **5.5.3** For each Rockwell scale to be compared, comparison tests shall be made at hardness levels within each of the hardness ranges specified by ISO 6508-2:2023, Table 1 (i.e. three hardness levels for each Rockwell scale except two hardness levels for the HRHW scale).
- **5.5.4** For each subsequent performance verification interval, the Rockwell scales chosen to be compared shall be different scales than compared previously for each category listed in <u>5.5.2</u> until all applicable scales are compared. Additional comparisons of previously compared scales can also be included in addition to the required comparisons.
- **5.5.5** Performance verification of the calibration machine with the calibration indenter shall be performed at least once annually, not to exceed 13 months. The verification measurements shall be carried out at a temperature of (23 ± 5) °C.
- **5.5.6** The results of each comparison shall be evaluated by appropriate statistical techniques, including calculating the normalized error, E_n , according to Formula (1):

$$E_{\rm n} = \frac{H_{\rm Lab} - H_{\rm Ref}}{\sqrt{U_{\rm Lab}^2 + U_{\rm Ref}^2}} \tag{1}$$

ISO 6508-3:2023(E)

where

 H_{Lab} is the measurement result of the calibration laboratory;

 H_{Ref} is the measurement result of the reference laboratory;

 $U_{\rm Lab}$ is the expanded uncertainty of the calibration laboratory's measurement result;

 U_{Ref} is the expanded uncertainty of the reference laboratory's measurement result.

5.5.7 The comparison results are considered satisfactory when the value of $|E_n| \le 1$ (i.e. greater than or equal to -1 and less than or equal to +1).

6 Reference block calibration procedure

- **6.1** The calibration machine shall undergo control verifications as specified in <u>Annex D</u> and be determined to be in-control prior to calibrating reference blocks.
- **6.2** The reference blocks shall be calibrated in a calibration machine as specified in Clause 5, at a temperature of (23 ± 5) °C, using the general procedure specified in ISO 6508-1.

During calibration, the thermal drift should not exceed 1 °C.

6.3 The velocity of the indenter, when it comes into contact with the surface, shall not exceed 1 mm/s.

The velocity of the indenter, when it comes into contact with the surface, should not exceed 0,3 mm/s for undamped systems.

6.4 Bring the indenter into contact with the test surface and apply the preliminary test force, F_0 , without shock or vibration and without oscillation or overload of the test force. The application time, T_a , of the preliminary test force, F_0 , shall not exceed $2 \cdot s. \frac{508-3:2023}{2023}$

The duration, T_p , of the preliminary test force, F_0 , shall be equal to (3 ± 1) s, as shown in Formula (2):

$$T_{\rm p} = T_{\rm a}/2 + T_{\rm pm} = (3\pm 1) \text{ s}$$
 (2)

where

 $T_{\rm p}$ is the preliminary test force time;

*T*_a is the application time of preliminary test force;

 $T_{\rm nm}$ is the duration time of preliminary test force prior to measuring the initial indentation depth.

For testing machines that apply the preliminary test force in less than 1 s (T_a), T_p can be calculated as being equal to T_{pm} .

6.5 Bring the measuring system to its datum position, and without shock, vibration, oscillation, or overload, apply the additional test force, F_1 .

For the regular Rockwell scale tests, apply the additional test force, F_1 , in 7^{+1}_{-6} s. For all HRN and HRTW Rockwell superficial test scales, apply the additional test force, F_1 , in less than or equal to 4 s. During the final stage of the indentation process (approximately in the range of 0,8 F to 0,99 F), the indentation speed should be in the range of 0,015 mm/s to 0,04 mm/s.

6.6 The duration of the application of the total force, F, shall be equal to (5 ± 1) s.