FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 5774

ISO/TC 45/SC 1

Secretariat: **DIN**

Voting begins on: 2023-01-31

Voting terminates on: 2023-03-28

Plastics hoses — Textile-reinforced types for compressed-air applications — Specification

Tuyaux en plastique — Types armés de textile pour applications avec de l'air comprimé — Spécifications

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SO/FDIS 5774</u>

https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/isofdis-5774

ISO/CEN PARALLEL PROCESSING

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 5774:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/FDIS 5774</u>

https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/isofdis-5774

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Forev	word	iv
Intro	oduction	v
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Classification	2
5	Couplings and end fittings	
6	Materials and construction	
-		
7	Dimensions and tolerances7.1Inside diameter, tolerances and minimum wall thickness	
	7.2 Concentricity	
	7.3 Tolerances on length	
8	Physical properties	
	8.1 Plastic compounds	
	8.1.1 Tensile strength and elongation at break of lining and cover	
	8.1.2 Resistance to ageing	
	8.1.3 Loss in mass on heating	
	8.1.4 Resistance to liquids	
	8.1.5 Hydrolysis test	
	8.2 Performance requirements on finished hoses 8.2.1 Hydrostatic requirements	
	8.2.1 Hydrostatic requirements8.2.2 Adhesion	
	8.2.3 Exposure to a xenon arc lamp	
	s://stand 8.2.4 te Bending test	
	8.2.5 Low-temperature flexibility	
9	Frequency of testing	
10	Marking	
11	Recommendations for packaging and storage	
12	Test report	
Anne	ex A (normative) Hydrolysis test	
	ex B (normative) Type and routine tests	
	ex C (informative) Production acceptance tests	
	ex D (informative) Couplings and end fittings	
Bibli	ography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Rubber and plastics hoses and hose assemblies*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 218, *Rubber and plastics hoses and hose assemblies*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This fifth edition cancels and replaces the fourth edition (ISO 5774:2016), which has been technically revised.

The main changes are as follows:

- <u>Clause 2</u> has been updated;
- the units have been revised and the unit of pressure has been added;
- <u>Clause 10</u> on marking has been updated.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

This document has been prepared to provide minimum acceptable requirements for the satisfactory performance of flexible thermoplastics hoses, textile reinforced, for compressed-air applications.

Some hose materials require a hydrolysis test (given in <u>Annex A</u>).

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 5774

https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/isofdis-5774

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 5774

https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/isofdis-5774

Plastics hoses — Textile-reinforced types for compressedair applications — Specification

1 Scope

This document specifies the requirements for four types of flexible thermoplastic hose, textile reinforced, for compressed-air applications in the temperature range from -10 °C to +60 °C.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37, Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties

ISO 105-A02, Textiles — Tests for colour fastness — Part A02: Grey scale for assessing change in colour

ISO 176:2005, Plastics — Determination of loss of plasticizers — Activated carbon method

ISO 188, Rubber, vulcanized or thermoplastic — Accelerated ageing and heat resistance tests

ISO 1307, Rubber and plastics hoses — Hose sizes, minimum and maximum inside diameters, and tolerances on cut-to-length hoses

ISO 1402, Rubber and plastics hoses and hose assemblies — Hydrostatic testing

ISO 1817, Rubber, vulcanized or thermoplastic — Determination of the effect of liquids 617177/150-

ISO 4671, Rubber and plastics hoses and hose assemblies — Methods of measurement of the dimensions of hoses and the lengths of hose assemblies

ISO 8033, Rubber and plastics hoses — Determination of adhesion between components

ISO 8330, Rubber and plastics hoses and hose assemblies — Vocabulary

ISO 10619-1, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 1: Bending tests at ambient temperature

ISO 10619-2:2021, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 2: Bending tests at sub-ambient temperatures

ISO 30013, Rubber and plastics hoses — Methods of exposure to laboratory light sources — Determination of changes in colour, appearance and other physical properties

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8330 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at https://www.electropedia.org/

4 Classification

Hoses are designated as one of the following four types depending on their pressure rating at the specified temperature:

- Type A: General industrial use light service for a maximum working pressure of 0,7 MPa (7 bar) at 23 °C and 0,45 MPa (4,5 bar) at 60 °C.
- Type B: General industrial use medium service for a maximum working pressure of 1 MPa (10 bar) at 23 °C and 0,65 MPa (6,5 bar) at 60 °C.
- Type C: Heavy service for a maximum working pressure of 1,6 MPa (16 bar) at 23 °C and 1,1 MPa (11 bar) at 60 °C.
- Type D: Heavy service for use in mining and outdoor work for a maximum working pressure of 2,5 MPa (25 bar) bar at 23 °C and 1,3 MPa (13 bar) at 60 °C.

The hoses are not intended for the transport of oil. However, compressed air coming from a compressor can contain some oil in suspension.

5 Couplings and end fittings

Hoses may be fitted with the appropriate coupling type and end fitting to form hose assemblies.

NOTE Guidance on coupling type is given in <u>Annex D</u> and ISO/TR 17784.

6 Materials and construction tandards.iteh.ai)

The hoses shall consist of:

- a) a lining made of a flexible thermoplastics material; 5774
- https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/iso-
- b) a reinforcement made of a natural or synthetic textile material applied by any suitable technique;
- c) a cover made of a flexible thermoplastics material.

The lining and the cover shall be of uniform thickness, concentric, fully gelled and free from visible cracks, porosity, foreign inclusions and any other defects which can cause the hose to be unserviceable.

7 Dimensions and tolerances

7.1 Inside diameter, tolerances and minimum wall thickness

When measured in accordance with ISO 4671, the inside diameter of hoses shall lie within the tolerance limits given in <u>Table 1</u> and the wall thickness shall meet the minimum requirements given in <u>Table 1</u>.

Nominal bore	Inside diameter	Tolerance	Minimum wall thickness				
	mm	mm	mm				
			Туре А	Туре В	Туре С	Type D	
4	4	±0,25	1,5	1,5	1,5	2,0	
5	5	±0,25	1,5	1,5	1,5	2,0	
6,3	6,3	±0,25	1,5	1,5	1,5	2,3	
8	8	±0,25	1,5	1,5	1,5	2,3	
9	8,5	±0,25	1,5	1,5	1,5	2,3	
10	9,5	±0,35	1,5	1,5	1,8	2,3	
12,5	12,5	±0,35	2,0	2,0	2,3	2,8	
16	16	±0,5	2,4	2,4	2,8	3,0	
19	19	±0,7	2,4	2,4	2,8	3,5	
25	25	±1,2	2,7	3,0	3,3	4,0	
31,5	31,5	±1,2	3,0	3,3	3,5	4,5	
38	38	±1,2	3,0	3,5	3,8	4,5	
40	40	±1,5	3,3	3,5	4,1	5,0	
50	50	±1,5	3,5	3,8	4,5	5,0	
38 40	38 40	±1,2 ±1,5	3,0 3,3	3,5 3,5	3,8 4,1		

Table 1 — Nominal bores, inside diameters, tolerances and minimum wall thicknesses

7.2 Concentricity

When determined in accordance with ISO 4671, the concentricity, based on the difference in indicator reading between the inside surface of the lining and the outside surface of the cover, shall be (as given in <u>Table 2</u>):

ISO/FDIS 5774

- no greater than 0,3 mm for hoses of minimum wall thickness from 1,5 mm up to and including 3,0 mm;
- no greater than 10 % of the wall thickness for hoses of minimum wall thickness over 3,0 mm and up to and including 5,0 mm;
- no greater than 15 % of the wall thickness for hoses of minimum wall thickness over 5,0 mm.

Minimum wall thickness mm	Concentricity
1,5 to 3,0	≤ 0,3 mm
over 3,0 to 5,0	≤ 10 % of wall thickness
over 5,0	\leq 15 % of wall thickness

Table 2 — Concentricity

7.3 Tolerances on length

The tolerances on cut lengths of hose shall be in accordance with ISO 1307.

8 Physical properties

8.1 Plastic compounds

8.1.1 Tensile strength and elongation at break of lining and cover

When determined in accordance with ISO 37, the tensile strength and elongation at break shall not be less than the values given in Table 3.

Testing shall be carried out either on test pieces taken from the hose wall or on test pieces taken from a sheet of hose material made using a laboratory press.

Hose component	Minimum tensile strength	Minimum elongation at break		
	МРа	%		
Lining	15,0	250		
Cover	15,0	250		

Table 3 — Tensile strength and elongation at break

8.1.2 Resistance to ageing

After ageing for seven days at a temperature of (70 ± 2) °C in accordance with ISO 188, the tensile strength and elongation at break of the lining and cover, as determined by ISO 37, shall not vary by more than the values given in Table 4 in comparison with the values of these properties before ageing.

Table 4 — Change i	n tensile streng	gth and elongation	from original value

	Hose component	Change in tensile strength from original value	Change in elongation at break 174 from original value			
htt	ps://standards.iteh.a	l/catalog/stan%ards/sist/4c98	cc0d-4348-42a%a9a9-b6ad226			
	Lining	15 ^{fd1s-5774}	25			
	Cover	15	25			

8.1.3 Loss in mass on heating

When tested in accordance with method B of ISO 176:2005, the materials of the lining and cover shall have a loss in mass not greater than 2 %.

8.1.4 Resistance to liquids

After immersion in oil No. 1 in accordance with ISO 1817 at (60 \pm 1) °C for 72 h, the volume of a test piece shall not vary by more than 15 %.

8.1.5 Hydrolysis test

When materials are used in the lining and/or cover that are susceptible to hydrolysis, a hydrolysis test shall be carried out using the method specified in <u>Annex A</u>, either on ISO 37 dumb-bell test pieces taken from the hose wall or on ISO 37 dumb-bell test pieces taken from a sheet of material made using a laboratory press.

After exposure to (95 ± 5) % relative humidity at (80 ± 2) °C for 500 h, neither the lining nor the cover shall show visible evidence of cracking, porosity or other defects.

The values of the tensile strength and the elongation at break of the ISO 37 dumb-bell test pieces after the hydrolysis test shall be more than 40% of the original values.

8.2 Performance requirements on finished hoses

8.2.1 Hydrostatic requirements

When tested in accordance with ISO 1402, hoses shall meet the requirements specified in Table 5.

During and after the proof pressure test, the hose shall be examined for evidence of leakage, cracking, abrupt distortion (indicating an irregularity in the construction) or any other faults. No such defects shall be observed.

	Maximum working pressure			Proof Minimum b pressure			mum b	urst pre	essure	Change in dimensions at proof pressure		
Hose	MPa b		ba	ar	MPa bar		MPa		bar		23 °C	
type	23 °C 6	3 °C 60 °C 23	50 °C 23 °C 60 °C	60.00	00.00	00.00	22.00	(0.00	22.00	(0.00	Length	Diameter
				23 °C 2	23 °C	23 °C	60 °C	23 °C	60 °C	%	%	
А	0,7	0,45	7	4,5	1,4	14	2,8	1,8	28	18	±8	±10
В	1	0,65	10	6,5	2	20	4,0	2,6	40	26	±8	±10
С	1,6	1,1	16	11	3,2	32	6,4	4,5	64	45	±8	±10
D	2,5	1,3	25	13	5	50	10,0	5	100	50	±8	±10

Table 5 — Hydrostatic pressure requirements at 23 °C and 60 °C

8.2.2 Adhesion Central STANDARD PREVIEW

When determined in accordance with ISO 8033, the adhesion between the lining and the cover shall not be less than 2,0 kN/m.

Use type 1 test pieces for hoses of inside diameter up to 32 mm, and type 2 test pieces for hoses of inside diameter of 38 mm and above.

https://standards.iteh.ai/catalog/standards/sist/4c98cc0d-4348-42a2-a9a9-b6ad226f7f77/iso-

8.2.3 Exposure to a xenon arc lamp

When tested in accordance with ISO 30013, preferably without water spray (see below), the cover shall show no evidence of cracking. Any change in colour caused by the exposure shall be determined by comparing the exposed test pieces with unexposed test pieces using the grey scale in accordance with ISO 105-A02. The grey-scale rating thus determined shall be more than 3.

Testing without spraying is recommended. By agreement between the interested parties, however, testing with spraying may be carried out (see ISO 30013).

8.2.4 Bending test

When bent to the minimum bend radius given in <u>Table 6</u>, in accordance with one of the methods specified in ISO 10619-1, using the method most appropriate to the size of hose, hoses shall show no evidence, under visual examination, of kinking, breaking or peeling. The value of the coefficient of deformation (T/D) shall not be lower than 0,8.