This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: D4891 - 89 (Reapproved 2006) D4891 - 13

Standard Test Method for Heating Value of Gases in Natural Gas <u>and Flare Gases</u> Range by Stoichiometric Combustion¹

This standard is issued under the fixed designation D4891; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the heating value of natural gases and similar gaseous mixtures within the range of composition shown in Table 1-, and Table 2 that covers flare components but is not intended to limit the components to be measured in flare gases.

1.2 This standard involves combustible gases. It is not the purpose of this standard to address the safety concerns, if any, associated with their use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

D1826 Test Method for Calorific (Heating) Value of Gases in Natural Gas Range by Continuous Recording Calorimeter E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method 2.2 *EPA Standard*:³

EPA-600 /2-85-106 Evaluation of the Efficiency of Industrial Flares: Flare Head Design and Gas Composition

3. Terminology

3.1 All of the terms defined in Test Method D1826 are included by reference.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *combustion <u>ratio</u><u>ratio</u>, <u>n</u>_the ratio of combustion air to gaseous fuel.*

3.2.2 stoichiometric ratio—the combustion ratio when the quantity of combustion air is just sufficient to convert all of the combustibles in the fuel to water and carbon dioxide. ASTM 104891-13

3.2.2 *burned gas <u>parameter</u>-<u>parameter</u>, <u>n</u> a property of the burned gas after combustion which is a function of the combustion ratio.*

3.2.3 *critical combustion <u>ratio</u>_<u>ratio</u>, <u>n</u>_<u>for a specific burned gas parameter</u>, the combustion ratio at which a plot of burned gas parameter versus combustion ratio has either maximum value or maximum slope.*

<u>3.2.4 combustion air requirement index (CARI)</u>, n—is the amount of air required for complete combustion of the gas being measured and can be used to index against other measured values such as the Wobbe Index or Heating Value.

3.2.5 *stoichiometric ratio*, *n*—the combustion ratio when the quantity of combustion air is just sufficient to convert all of the combustibles in the fuel to water and carbon dioxide.

4. Summary of Test Method

4.1 Air is mixed with the gaseous fuel to be tested. The mixture is burned and the air-fuel ratio is adjusted so that essentially a stoichiometric proportion of air is present. More exactly, the adjustment is made so that the air-fuel ratio is in a constant

¹ This test method is under the jurisdiction of ASTM Committee D03 on Gaseous Fuels and is the direct responsibility of Subcommittee D03.03 on Determination of Heating Value and Relative Density of Gaseous Fuels.

Current edition approved June 1, 2006May 1, 2013. Published June 2006May 2013. Originally approved in 1989. Last previous edition approved in 2001 as D4891-89 (2001). DOI: 10.1520/D4891-89R06.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from United States Environmental Protection Agency (EPA), Ariel Rios Bldg., 1200 Pennsylvania Ave., NW, Washington, DC 20004, http://www.epa.gov.

TABLE 1 Natural Gas Components and Range of Composition Covered

Compound	Concentration Range, mole, %
Helium	0.01 to 5
Nitrogen	0.01 to 20
Carbon dioxide	0.01 to 10
Methane	50 to 100
Ethane	0.01 to 20
Propane	0.01 to 20
<i>n</i> -butane	0.01 to 10
isobutane	0.01 to 10
<i>n</i> -pentane	0.01 to 2
Isopentane	0.01 to 2
Hexanes and heavier	0.01 to 2

TABLE 2 Natural Gas Components and Range of Composition Covered^A

	Covered
Compound	CAS Number
Volatile Analytes	
Apatana	67.64.1
Acetone	07-04-1
Acetonithe	75-05-8
Acrolein	107-05-8
Acrylonitrile	<u>107-13-1</u>
Benzene	<u>71-43-2 2</u>
1,3-Butadiene	<u>106-99-0</u>
Carbon disulfide	75-15-0
Chlorobenzene	108-90-7
Cumene	98-82-8
(isopropylbenzene)	
1 2-Dibromoethane	106-93-4
Ethylbenzene	100-41-4 2 2 4
Hovano	110 54 2
Mathanal	67.50.1
Methodia hut d betar	<u>07-50-1</u>
Methyl Isobutyl ketone	108-10-1
Methyl t-butyl ether	1634-04-4
Methylene chloride	<u>75-09-2</u>
Nitrobenzene	<u>98-95-3</u>
Nitropropane	79-46-9
Pentane2	109-66-0
Styrene	100-42-5
Tetrachloroethene	127-18-4
Toluene	108-88-3
Trichloroethene	79-01-6
Trimethylpentane	2 5/0-24-1
Yulonos (mixed isomere)	
Ayielles (IIIIxeu ISOIIlers)	
Irimethylpentane	2 540-84-1
Xylenes (mixed isomers)	1330-20-7
ndanda	
Semi-volatile Analytes	
Acenaphthene	<u>83-32-9</u>
Acenaphthylene	208-96-8
Aniline	62-53-3
Anthracene	120-12-7
Benzidine1	92-87-5
Benzlalanthracene	56-55-3
Benzolblfluoranthene	205-99-2
Benzelkifluerenthene	203-09-2
	207-08-9
Benzolg,n,ijperviene	191-24-2
Benzolajpyrene	50-32-8
Benzo[e]pyrene2	<u>192-97-2</u>
Biphenyl2, 49dc-8f5b-83	3 feb 2 8 7 9 ea / a 92 - 52 - 4 4 8 9 1 - 1 3
Cresol (mixed isomers)	1319-77-3
Chrysene	218-01-9
Dibenz[a,h]anthracene	53-70-3
Dibenzofuran	132-64-9
Dibenzo(a e)pyrene	192-65-4
3 3'- Dimethoxybenzidine	110-00-4
Dimethylaminohonzono	60 11 7
	57.07.0
$\frac{7,12}{1}$	57-97-0
Dimethylbenz(a)anthracene	110.00 7
3,3 - Dimethylbenzidine	119-93-7
<u>à,à-</u>	122-09-8
Dimethylphenethylamine	
2,4-Dimethylphenol	<u>105-67-9</u>
Fluoranthene	206-44-0
Fluorene	86-73-7
Indeno(1.2.3-cd)pyrene	193-39-5
Isophorone	78-59-1
3-Methylcholanthrene	56-49-5
2-Methylnanhthalene	<u>00 +0 0</u> 01_57_6
Nonhthalana	01.00.2
Donilono2	<u>91-20-3</u> 100 EE 0
	196-00-0
<u>Phenanthrene</u>	85-01-8
Phenol	108-95-2
1,4-Phenylenediamine	<u>106-50-3</u>
Pyrene	129-00-0
o-Toluidine	95-53-4
Aldehydes	
Methanol	67-56-1
Formaldehyde	50-00-0
Acetaldebyde	75-07-0
· ·····································	10010

iTeh S (https://stan Docume

<u>ASTM</u>

https://standards.iteh.ai/catalog/standards/sist/bc24

Compound	CAS Num	CAS Number		
ropanal	123-38-6			
		_		
1 to C5 Hydrocarbons	Compound			
Alkanos	Mothano			
	Ethopo	74-02-0		
2 Alkanaa	Bropopo	74-04-0		
5 Aikanes	<u>Pitopane</u>	106 07 9		
4 Alkanes	II-Dutarie	75.00.5		
	n Pontano	100.66.0		
5 Alkanos	2 Mothylbutano	79 79 4		
5 Aikanes		<u>/0-/0-4</u> 007 00 0		
2 Olefine	Ethylopo	71.95 1		
	Acotylopo	74-05-1		
C2 Alkalles	Bropylopo	115 07 1		
C4 Olofins	1 Butono	106.09.0		
C4 Olenins	2 Butono	107 01 7		
	Isobutono	115 11 7		
	1 Pontono	100.67.1		
<u>C5 Olelins</u>	<u>Cis 2 poptopo</u>	627 20 2		
	Trans-2-pentene	646-04-8		
	2 Motbyl 1 butopo	<u>562 46 2</u>		
	3-Methyl-1-butene	563-45-1		
	2 Mothyl 2 butono	512 25 0		
		1/2-20-0		
22 Alkadionos	Propadiono	142-29-0		
Alkadienes	1.2-Butadiene	500-10-2		
Aikadienes	1.3-Butadiene	106-99-0		
75 Alkadianas	1.2-Pentadiene	591-95-7		
	1-cis-3-Pentadiene	1574-41-0		
	1-trans-3- Pentadiene	2004-70-8		
	1 4-Pentadiene	591-93-5		
	2 3-Pentadiene	591-96-8		
	3-Methyl-1.2- butadiene	598-25-4		
	2-Methyl-1.3- butadiene	78-79-5		
	Cyclopentadiene	542-92-7		
Heating Value Range	eyenepeniaarene	0.12.02.1		
Jnit	Lower	Upper		
Btu/ft ³	83 1 1 0 1	2350		
Flare Gas Heating Value ra	ange defined in Table 2 is derived	d from the Evaluation		
of the Efficiency of Industri	al Flares: Flare Head Design a	nd Gas Composition		
PA-600 /2-85-106 Septen	ber 1985 Table 1-1, Agency Ir	formation Collection		
tivities OMB Responses	FPA ICB Number 2411 01: NSI	PS and NESHAP for		

proportion to the stoichiometric ratio which<u>that</u> is a relative measure of the heating value. To set this ratio, a characteristic property of the burned gas is measured, such as temperature or oxygen concentration.

5. Significance and Use

5.1 This test method provides an accurate and reliable procedure to measure the total heating value of a fuel gas, on a continuous basis, which is used for regulatory compliance, custody transfer, and process control.

5.2 Some instruments which conform to the requirements set forth in this test method can have response times on the order of 1 min or less and can be used for on-line measurement and control.

5.3 The method is sensitive to the presence of oxygen and nonparaffin fuels. For components not listed and composition ranges that fall outside those in Table 1 and Table 2, modifications in the method and changes to the calibration gas or gasses being used may be required to obtain correct results.

6. Apparatus

6.1 A suitable apparatus for carrying out the stoichiometric combustion method will have at least the following four components: flow meter or regulator, or both; combustion chamber; burned gas sensor; and electronics. The requirement for each of these components is discussed below. The detailed design of each of these components can vary. Two Three different apparatus are shown in Fig. 1-and, Fig. 2 and Fig. 23. In each figure the equivalent of the four necessary components are enclosed in dashed lines.