Designation: D3984 - 08 D3984 - 13 ## Standard Specification for Ethane Thermophysical Property Tables¹ This standard is issued under the fixed designation D3984; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (\$\epsilon\$) indicates an editorial change since the last revision or reapproval. #### 1. Scope - 1.1 The thermophysical property tables for ethane are for use in the calculation of the pressure-volume-temperature (PVT), thermodynamic, and transport properties of ethane for process design and operations. Tables are provided for gaseous and liquid ethane at temperatures between 92 and 600 K at pressures to 20 MPa. One table provides Two tables provide properties at the conditions of liquid-vapor equilibrium (saturation properties). The other A third table provides properties at selected *T,p* points for the equilibrium phase at those conditions. The tables were developed by the National Institute of Standards and Technology from a Standard Reference Database product REFPROP, version 8.0.9.0. - 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. ### 2. Applicability 2.1 These tables apply directly only to pure gaseous ethane. However, it is expected that they may find substantial use in mathematical models and tables for the thermophysical properties of mixtures containing ethane. # iTeh Standards (https://standards.iteh.ai) Document Preview ASTM D3984-13 https://standards.iteh.ai/catalog/standards/sist/3c9a29ad-a21e-4f38-9179-df6c76d0a9aa/astm-d3984-13 ¹ This specification is under the jurisdiction of ASTM Committee D03 on Gaseous Fuels and is the direct responsibility of Subcommittee D03.08 on Thermophysical Properties. Current edition approved Dec. 1, 2008May 1, 2013. Published January 2009May 2013. Originally approved in 1982. Last previous edition approved in 20032008 as D3984 – 93 (2003):D3984 – 08. DOI: 10.1520/D3984-08.10.1520/D3984-13. #### 3. Tables - 3.1 These tables were produced by equations from a computer package, "NIST Standard Reference Database 23; Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.0." A wide selection of units (SI units, engineering units, chemical units) and additional properties are available with this program.² - 3.2 These thermophysical property tables are: - 3.2.1 Thermophysical Properties of Coexisting Gaseous and Liquid Ethane, Ethane Liquid at Vapor-Liquid Equilibrium, in SI units. See Table 1. - 3.2.2 Thermophysical Properties of Ethane Along Isobars, Vapor at Vapor-Liquid Equilibrium, in SI units. See Table 2. - 3.2.3 Thermophysical Properties of Ethane Along Isobars, in SI units. See Table 3. - 3.3 The symbols are: - T, temperature (K) - ρ, molar density (mol·l⁻¹) - H, molar enthalpy (J·mol⁻¹) - S, molar entropy $(J \cdot K^{-1} \cdot mol^{-1})$ - C_{v} , constant volume molar heat capacity (J·K⁻¹·mol⁻¹) - C_p , constant pressure molar heat capacity $(J \cdot K^{-1} \cdot mol^{-1})$ - \underline{c} , speed of sound (m·s⁻¹) - η, viscosity (μPa·s) - λ , thermal conductivity (mW·m⁻¹·K⁻¹) - 3.4 The tabulated thermophysical properties are: - ρ, molar density (mol·l⁻¹) - H, molar enthalpy (J·mol⁻¹) - S, molar entropy $(J \cdot K^{-1} \cdot mol^{-1})$ - C_{ν} , constant volume molar heat capacity (J·K⁻¹·mol⁻¹) C_{p} , constant pressure molar heat capacity (J·K⁻¹·mol⁻¹) - c, speed of sound ($m \cdot s^{-1}$) - η, viscosity (μPa·s) - λ , thermal conductivity (mW·m⁻¹·K⁻¹) - 3.3 These tables were produced by equations from a computer package, "NIST Standard Reference Database 23; Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version =8.0" A wide selection of units (SI units, engineering units, chemical units) is available with this program.² #### 4. Additional Information 4.1 Reference state properties are required to calculate certain of the thermodynamic properties (enthalpy, entropy, etc.) from an equation of state formulation. The reference state properties used to generate the tables in this specification are: enthalpy, H, and entropy, S, at 298.15 K and 0.101325 MPa the Normal Boiling Point; 184.57K and 0.10133MPa (H=11874.2=14716 J/mol and S = 221.116 J/(mol K) = 79.731 J/(mol K). The molar mass of ethane is 30.069 g/mol. #### 5. Keywords 5.1 ethane gas tables; natural gas; thermodynamic properties of ethane; transport properties of ethane ² Available from Standard Reference Data, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 3460, Gaithersburg, MD 20899. ∰ D3984 – 13 TABLE 1 Thermophysical Properties of Coexisting Gaseous and Liquid Ethane | TABLE 1 Inermophysical Properties of Goexisting Gaseous and Liquid Ethane | | | | | | | | | | | |--|--|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--| | <i>T</i>
K | <i>p</i>
MPa | ρ
mol·l ⁻¹ | <i>H</i>
J⋅mol ⁻¹ | <i>S</i>
J⋅mol ⁻¹ ⋅K ⁻¹ | C_{ν} J·mol ⁻¹ ·K ⁻¹ | C_p J·mol ⁻¹ ·K ⁻¹ | <i>c</i>
m⋅s ⁻¹ | η
μPa⋅s | λ
mW·m⁻¹·K⁻ | | | 90.4 | 1.15E-06 | 21.667 | -14794 | 69.195 | 48.26 | 69.93 | 2008.5 | 255.6 | 1279 | | | 90.4 | 1.15E-06 | 1.53E-06 | 3089.2 | 267.02 | 26.81 | 35.13 | 180.97 | 2.910 | 3.044 | | | 92 | 1.74E-06 | 21.608 | -14682 | 70.419 | 47.85 | 69.60 | 1996.7 | 254.3 | 1193 | | | 92 | 1.74E-06 | 2.28E-06 | 3145.5 | 264.2 | 26.90 | 35.22 | 182.48 | 3.000 | 3.089 | | | 0.4 | 0.005.00 | 04 505 | 14540 | 74.040 | 47.00 | 00.07 | 1000.1 | 050.0 | 1007 | | | 94
94 | 2.86E-06
2.86E-06 | 21.535
3.65E-06 | -14543
3216 | 71.912
260.84 | 47.39
27.02 | 69.27
35.34 | 1982.1
184.36 | 252.8
3.113 | 1097
3.145 | | | J-1 | 2.00L-00 | 3.03L-00 | 3210 | 200.04 | 27.02 | 00.04 | 104.50 | 5.115 | 3.143 | | | 96 | 4.58E-06 | 21.462 | -14405 | 73.368 | 46.99 | 69.01 | 1967.5 | 251.1 | 1013 | | | 96 | 4.58E-06 | 5.74E-06 | 3286.8 | 257.66 | 27.14 | 35.46 | 186.22 | 3.227 | 3.202 | | | 98 | 7.2E-06 | 21.389 | -14267 | 74.788 | 46.64 | 68.80 | 1952.9 | 249.5 | 939.1 | | | 9 8 | 7.2E-06 | 8.83E-06 | 3357.8 | 254.64 | 27.26 | 35.58 | 188.05 | 3.341 | 3.259 | | | | | | | | | | | | | | | -00 | 1.11E-05 | 21.316 | -14130 | 76.176 | 4 6.32 | 68.64 | 1938.4 | 247.8 | 873.2 | | | 'UU | 1.11E-05 | 1.33E-05 | 3429.1 | 251.77 | 27.38 | 35.70 | 189.86 | 3.456 | 3.316 | | | 102 | 1.68E-05 | 21.243 | -13993 | 77.534 | 46.04 | 68.52 | 1924 | 246.1 | 814.5 | | | 02 | 1.68E-05 | 1.98E-05 | 3500.6 | 249.04 | 27.50 | 35.82 | 191.65 | 3.572 | 3.373 | | | 04 | 2.49E-05 | 21.17 | -13856 | 78.864 | 45.79 | 68.44 | 1909.5 | 244.4 | 761.9 | | | 04
04 | 2.49E-05
2.49E-05 | 21.17
2.88E-05 | -13856
3572.3 | 78.864
246.44 | 45.79
27.63 | 58.44
35.94 | 1909.5
193.42 | 244.4
3.689 | 761.9
3.430 | | | | 202 00 | 2.002 00 | 0072.0 | 2.0 | 27.00 | 00.0 | .002 | 0.000 | 000 | | | 06 | 3.64E-05 | 21.097 | -13719 | 80.167 | 45.56 | 68.38 | 1895.1 | 242.7 | 714.6 | | | 06 | 3.64E-05 | 4.13E-05 | 3644.2 | 243.97 | 27.75 | 36.07 | 195.17 | 3.807 | 3.488 | | | 08 | 5.24E-05 | 21.024 | -13582 | 81.445 | 45.36 | 68.36 | 1880.8 | 240.9 | 672.0 | | | 08 | 5.24E-05 | 5.83E-05 | 3716.4 | 241.62 | 27.87 | 36.19 | 196.9 | 3.925 | 3.545 | | | | _ | | 1 | Tell 2 | tallua | lrus | | | | | | 10
10 | 7.43E-05
7.43E-05 | 20.951
8.12E-05 | -13446
3788.7 | 82.699
239.37 | 45.17
28.00 | 68.35
36.32 | 1866.4
198.61 | 239.1
4.045 | 633.4
3.603 | | | 10 | 7.452-05 | 0.121-03 | 3700.7 | 253.57 | n / 9 i / 1 | 30.52 | 130.01 | 4.043 | 5.005 | | | 12 | 0.000104 | 20.878 | -13309 | 83.931 | 45.00 | 68.36 | 1852 | 237.3 | 598.3 | | | 12 | 0.000104 | 0.000112 | 3861.3 | 237.24 | 28.12 | 36.45 | 200.3 | 4.165 | 3.662 | | | 14 | 0.000144 | 20.805 | -13172 | 85.141 E | 44.85 | 68.39 | 1837.6 | 235.5 | 566.3 | | | 14 | 0.000111 | 0.000152 | 3934.1 | 235.2 | 28.25 | 36.58 | 201.98 | 4.286 | 3.720 | | | | | | | | | | | | | | | 16
16 | 0.000196
0.000196 | 20.731
0.000203 | -13035
4007.0 | 86.331
233.25 | 1D 44.71 13 28.38 | 68.43
36.71 | 1823.2
203.63 | 233.6
4.409 | 537.1
3.778 | | | ht | tne://standa | rds iteh ai/ca | talog/stands | 200.20
arde/ejet/2 e 0 e | 20.50
2024_221e. | _/1f3 | df6c76d0a0 |)22/25tm_d3 | 308/1_13 | | | 18 | 0.000264 | 20.658 | -12898 | 87.501 | 44.57 | 68.48 | 1808.8 | 231.8 | 510.4 | | | 18 | 0.000264 | 0.000269 | 4080.2 | 231.39 | 28.52 | 36.85 | 205.27 | 4.532 | 3.837 | | | 20 | 0.000352 | 20.584 | -12761 | 88.653 | 44.45 | 68.54 | 1794.4 | 229.9 | 485.8 | | | 20 | 0.000352 | 0.000353 | 4153.5 | 229.61 | 28.65 | 36.99 | 206.89 | 4.657 | 3.896 | | | | | | | | | | | | | | | 22 | 0.000465 | 20.511
0.000459 | -12624 | 89.786 | 44.34 | 68.61 | 1780 | 228.0 | 463.1 | | | 22 | 0.000465 | 0.000455 | 4227.0 | 227.91 | 28.79 | 37.14 | 208.49 | 4.782 | 3.955 | | | 24 | 0.000608 | 20.437 | -12487 | 90.903 | 44.24 | 68.69 | 1765.5 | 226.1 | 442.2 | | | 24 | 0.000608 | 0.00059 | 4300.6 | 226.29 | 28.93 | 37.29 | 210.07 | 4.909 | 4.015 | | | 26 | 0.000787 | 20.363 | -12349 | 92.002 | 44.14 | 68.78 | 1751 | 224.2 | 422.8 | | | 26 | 0.000787 | 0.000752 | 4374.4 | 224.73 | 29.08 | 37.45 | 211.63 | 5.037 | 4.074 | | | | | | | | | | | | | | | 28 | 0.001009 | 20.289 | -12212 | 93.086 | 44.05 | 68.86
27.61 | 1736.5 | 222.3
5.166 | 404.9 | | | 28 | 0.001009 | 0.000949 | 4448.3 | 223.24 | 29.23 | 37.61 | 213.17 | 5.166 | 4.134 | | | 30 | 0.001284 | 20.214 | -12074 | 94.154 | 43.96 | 68.96 | 1722 | 220.4 | 388.2 | | | 30 | 0.001284 | 0.001189 | 4522.3 | 221.82 | 29.38 | 37.77 | 214.69 | 5.296 | 4.194 | | | 32 | 0.00162 | 20.14 | -11936 | 95.208 | 43.88 | 69.06 | 1707.5 | 218.4 | 372.6 | | | 32
32 | 0.00162
0.00162 | 20.14
0.001478 | -11936
4596.4 | 95.208
220.45 | 43.88
29.53 | 59.06
37.94 | 1707.5
216.19 | 218.4
5.427 | 372.6
4.254 | | | | | 2.30 / 0 | | | 20.00 | 30 | | J, | 0 r | | | 34 | 0.002028 | 20.065 | -11798 | 96.247 | 43.81 | 69.16 | 1692.9 | 216.4 | 358.1 | | | 34 | 0.002028 | 0.001824 | 4670.6 | 219.14 | 29.69 | 38.11 | 217.68 | 5.560 | 4.314 | | | 36 | 0.002521 | 19.991 | -11659 | 97.273 | 43.74 | 69.27 | 1678.3 | 214.5 | 344.5 | | | 36 | 0.002521 | 0.002234 | 4744.8 | 217.89 | 29.84 | 38.28 | 219.14 | 5.694 | 4.374 | | | | | | | | | | | | | | | 38 | 0.003111 | 19.916 | -11520 | 98.285 | 43.67 | 69.38 | 1663.7 | 212.5 | 331.8 | | ## TABLE 1 Continued | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . i Commuca | | | | | |----------------------------------|--|--|---|--|--|--|--|--------------------------------------|--| | T
K | <i>p</i>
MPa | ρ
mol·l ⁻¹ | <i>H</i>
J⋅mol ⁻¹ | <i>S</i>
J⋅mol ⁻¹ ⋅K ⁻¹ | C_{ν} J·mol ⁻¹ ·K ⁻¹ | C_p J·mol ⁻¹ ·K ⁻¹ | c
m⋅s⁻¹ | η
μPa⋅s | λ
mW·m ⁻¹ ·K ⁻¹ | | 138 | 0.003111 | 0.002718 | 4819.2 | 216.69 | 30.00 | 38.45 | 220.58 | 5.829 | 4.435 | | | | | | | | | | | | | 140
140 | 0.003814
0.003814 | 19.84
0.003286 | -11382
4893.6 | 99.284
215.53 | 43.61
30.15 | 69.50
38.62 | 1649.1
222.01 | 210.6
5.966 | 319.8
4.496 | | 140 | 0.003614 | 0.003280 | 4090.0 | 210.00 | 30.13 | 30.02 | 222.01 | 3.900 | 4.430 | | 142 | 0.004645 | 19.765 | -11242 | 100.27 | 43.55 | 69.62 | 1634.4 | 208.6 | 308.5 | | 142 | 0.004645 | 0.003947 | 4968.0 | 214.43 | 30.31 | 38.79 | 223.42 | 6.104 | 4.556 | | 144 | 0.005623 | 19.689 | -11103 | 101.24 | 43.49 | 69.74 | 1619.7 | 206.6 | 297.9 | | 144 | 0.005623 | 0.004714 | 5042.4 | 213.37 | 30.45 | 38.96 | 224.80 | 6.244 | 4.617 | | 146 | 0.006766 | 19.613 | -10963 | 102.21 | 43.44 | 69.87 | 1605.0 | 204.7 | 287.9 | | 146 | 0.006766 | 0.005599 | 5116.8 | 212.35 | 30.60 | 39.13 | 226.17 | 6.385 | 207.9
4.678 | | | | | | | | | | | | | 148 | 0.008097
0.008097 | 19.537 | -10823
5191.2 | 103.16 | 43.40
30.74 | 70.00 | 1590.3
227.51 | 202.7 | 278.5
4.740 | | 148 | 0.000097 | 0.006614 | 3191.2 | 211.37 | 30.74 | 39.29 | 227.91 | 6.528 | 4.740 | | 150 | 0.009638 | 19.461 | -10683 | 104.1 | 43.35 | 70.14 | 1575.5 | 200.7 | 269.6 | | 150 | 0.009638 | 0.007773 | 5265.6 | 210.42 | 30.88 | 39.45 | 228.84 | 6.672 | 4.801 | | 152 | 0.011413 | 19.384 | -10543 | 105.03 | 43.31 | 70.28 | 1560.7 | 198.7 | 261.1 | | 152 | 0.011413 | 0.009091 | 5339.8 | 209.52 | 31.01 | 39.61 | 230.14 | 6.819 | 4.863 | | 454 | 0.040440 | 10.007 | 10400 | 105.05 | 40.07 | 70.40 | 4545.0 | 100.0 | 050.0 | | 154
154 | 0.013448
0.013448 | 19.307
0.010582 | -10402
5414.0 | 105.95
208.65 | 43.27
31.14 | 70.42
39.76 | 1545.9
231.42 | 196.8
6.967 | 253.0
4.924 | | | | | | | | | | | | | 156 | 0.015772 | 19.23 | -10261 | 106.86 | 43.24 | 70.57 | 1531.1 | 194.8 | 245.4 | | 156 | 0.015772 | 0.012264 | 5488.1 | 207.81 | 31.26 | 39.92 | 232.68 | 7.116 | 4.986 | | 158 | 0.018414 | 19.152 | -10120 | 107.76 | 43.21 | 70.73 | 1516.2 | 192.8 | 238.1 | | 158 | 0.018414 | 0.014151 | 5561.9 | 207.01 | 31.39 | 40.08 | 233.91 | 7.268 | 5.048 | | 160 | 0.021405 | 19.074 | -9977.8 | 108.65 | 43.18 | 70.89 | 1501.3 | 190.8 | 231.2 | | 160 | 0.021405 | 0.016263 | 5635.6 | 206.23 | 31.51 | 40.24 | 235.12 | 7.422 | 5.110 | | 100 | 0.004770 | 10.000 | 0005.0 | 100.50 | 40.10 | 71.05 | 1400.0 | 100.0 | 004.5 | | 162
162 | 0.024779
0.024779 | 18.996
0.018617 | -9835.8
5709.0 | 109.53
205.48 | 43.16
31.64 | 71.05
40.40 | 1486.3
236.3 | 188.9
7.577 | 224.5
5.172 | | | | | | | | | | | | | 164
164 | 0.02857
0.02857 | 18.918
0.021232 | -9693.3
5782.2 | 110.4
204.76 | 43.14
31.76 | 71.22
40.57 | 1471.4
237.45 | 186.9
7.735 | 218.2
5.234 | | T 0 T | 0.02037 | 0.021202 | 5702.2 | 204.70 | 51.70 | 40.57 | 207.40 | 7.705 | 5.204 | | 166 | 0.032814 | 18.839 | -9550.6 | 111.27 | 43.12 | 71.40 | 1456.4 | 184.9 | 212.2 | | 166 ht | tp 0.032814 da | rds ^{0.024127} /ca | talo 5855.0 nda | ards 204.07 c9 a | 129a 31.90 21e- | -4ß 40.75 79- | df6 238.57 0a9 | aa/ 2.895 -d3 | 3984 5.297 | | 168 | 0.037551 | 18.759 | -9407.4 | 112.12 | 43.11 | 71.58 | 1441.4 | 183.0 | 206.4 | | 168 | 0.037551 | 0.027324 | 5927.6 | 203.4 | 32.03 | 40.94 | 239.67 | 8.057 | 5.360 | | 170 | 0.042819 | 18.68 | -9263.9 | 112.97 | 43.10 | 71.77 | 1426.3 | 181.0 | 200.8 | | 170 | 0.042819 | 0.030843 | 5999.7 | 202.75 | 32.17 | 41.14 | 240.73 | 8.221 | 5.422 | | 170 | 0.04000 | 10.0 | 0100.0 | 440.04 | 40.00 | 74.00 | 4444.0 | 170 1 | 105.5 | | 172
172 | 0.04866
0.04866 | 18.6
0.034706 | -9120.0
6071.4 | 113.81
202.13 | 43.09
32.32 | 71.96
41.35 | 1411.2
241.76 | 179.1
8.388 | 195.5
5.485 | | | | | | | | | | | | | 174
174 | 0.055118
0.055118 | 18.519
0.038935 | -8975.6
6142.7 | 114.64
201.53 | 43.09 | 72.16 | 1396.1 | 177.1
8.557 | 190.4
5.548 | | 174 | 0.055116 | 0.030933 | 0142.7 | 201.00 | 32.48 | 41.58 | 242.76 | 0.557 | 3.340 | | 176 | 0.062235 | 18.438 | -8830.9 | 115.47 | 43.09 | 72.37 | 1380.9 | 175.2 | 185.5 | | 176 | 0.062235 | 0.043553 | 6213.5 | 200.95 | 32.65 | 41.83 | 243.72 | 8.728 | 5.612 | | 178 | 0.07006 | 18.357 | -8685.7 | 116.28 | 43.10 | 72.59 | 1365.7 | 173.3 | 180.7 | | 178 | 0.07006 | 0.048584 | 6283.7 | 200.38 | 32.83 | 42.09 | 244.65 | 8.902 | 5.675 | | 100 | 0.070600 | 10.075 | 0540.0 | 4474 | 40.11 | 70.01 | 10E0 E | 171.0 | 176.0 | | 180
180 | 0.078638
0.078638 | 18.275
0.054053 | -8540.0
6353.4 | 117.1
199.84 | 43.11
33.02 | 72.81
42.38 | 1350.5
245.54 | 171.3
9.079 | 176.2
5.739 | | | | | | | | | | | | | 182 | 0.088019 | 18.193 | -8393.8 | 117.9 | 43.12 | 73.04 | 1335.2 | 169.4 | 171.8 | | 182 | 0.088019 | 0.059985 | 6422.6 | 199.31 | 33.21 | 42.68 | 246.39 | 9.258 | 5.803 | | 184 | 0.098253 | 18.11 | -8247.2 | 118.7 | 43.14 | 73.28 | 1319.9 | 167.5 | 167.6 | | 184 | 0.098253 | 0.066405 | 6491.2 | 198.8 | 33.42 | 43.00 | 247.2 | 9.441 | 5.867 | | 186 | 0.10939 | 18.026 | -8100.0 | 119.49 | 43.16 | 73.53 | 1304.5 | 165.6 | 163.5 | | 186 | 0.10939 | 0.07334 | 6559.1 | 198.3 | 33.65 | 43.34 | 247.98 | 9.626 | 5.931 | | | | | | | | | | | | ## TABLE 1 Continued | | | | | 171222 | | | | | | |----------------------------------|--|---|---|--|--|--|--|--------------------------------------|--------------------------------------| | <i>T</i>
K | р
MPa | ρ
mol·l ⁻¹ | <i>H</i>
J⋅mol ⁻¹ | <i>S</i>
J⋅mol ⁻¹ ⋅K ⁻¹ | C_{ν} J·mol ⁻¹ ·K ⁻¹ | C_p J·mol ⁻¹ ·K ⁻¹ | <i>c</i>
m⋅s ⁻¹ | η
μPa⋅s | λ
mW⋅m⁻¹⋅K⁻¹ | | 188 | 0.12149 | 17.942 | -7952.3 | 120.28 | 43.18 | 73.79 | 1289.2 | 163.7 | 159.5 | | 188 | 0.12149 | 0.080817 | 6626.4 | 197.82 | 33.88 | 43.69 | 248.71 | 9.814 | 5.996 | | 190 | 0.13459 | 17.858 | -7804.1 | 121.06 | 43.21 | 74.06 | 1273.7 | 161.8 | 155.7 | | 190 | 0.13459 | 0.088865 | 6693.0 | 197.36 | 34.12 | 44.07 | 249.41 | 10.00 | 6.061 | | 192 | 0.14876 | 17.773 | -7655.2 | 121.83 | 43.24 | 74.33 | 1258.3 | 156.0 | 152.0 | | 192 | 0.14876 | 0.097512 | 6758.9 | 196.91 | 34.37 | 44.46 | 250.06 | 10.20 | 6.126 | | 194 | 0.16405 | 17.687 | -7505.8 | 122.6 | 43.28 | 74.62 | 1242.8 | 158.1 | 148.4 | | 194 | 0.16405 | 0.10679 | 6824.1 | 196.47 | 34.63 | 44.89 | 250.67 | 10.40 | 6.192 | | 196 | 0.18052 | 17.601 | -7355.8 | 123.37 | 43.32 | 74.92 | 1227.2 | 156.2 | 144.9 | | 196 | 0.18052 | 0.11672 | 6888.6 | 196.04 | 34.90 | 45.31 | 251.24 | 10.60 | 6.258 | | 198 | 0.19823 | 17.514 | -7205.1 | 124.13 | 43.36 | 75.23 | 1211.7 | 154.4 | 141.5 | | 198 | 0.19823 | 0.12735 | 6952.3 | 195.63 | 35.18 | 45.76 | 251.77 | 10.80 | 6.324 | | 200 | 0.21723 | 17.426 | -7053.8 | 124.88 | 43.41 | 75.55 | 1196.0 | 152.6 | 138.3 | | 200 | 0.21723 | 0.1387 | 7015.2 | 195.23 | 35.46 | 4 6.22 | 252.26 | 11.01 | 6.391 | | 202 | 0.23759 | 17.337 | -6901.8 | 125.63 | 43.46 | 75.88 | 1180.4 | 150.7 | 135.1 | | 202 | 0.23759 | 0.1508 | 7077.3 | 194.84 | 35.74 | 46.70 | 252.70 | 11.22 | 6.458 | | 204 | 0.25936 | 17.248 | -6749.1 | 126.38 | 43.52 | 76.23 | 1164.7 | 148.9 | 132.0 | | 204 | 0.25936 | 0.1637 | 7138.6 | 194.45 | 36.04 | 47.19 | 253.10 | 11.44 | 6.526 | | 206 | 0.28261 | 17.158 | -6595.7 | 127.12 | 43.58 | 76.58 | 1148.9 | 147.1 | 129.0 | | 206 | 0.28261 | 0.17742 | 7199.0 | 194.08 | 36.33 | 47.70 | 253.45 | 11.66 | 6.594 | | 208 | 0.3074 | 17.068 | -6441.5 | 127.86 | 43.65 | 76.96 | 1133.1 | 145.3 | 126.1 | | 208 | 0.3074 | 0.192 | 7258.5 | 193.72 | 36.63 | 48.23 | 253.76 | 11.88 | 6.663 | | 210
210 | 0.3338
0.3338 | 16.976
0.20749 | -6286.6
7317.1 | 128.59
193.37 | 43.72
36.94 | 77.34
48.77 | 1117.3
254.02 | 143.5
12.11 | 123.2
6.732 | | | | | | | | | | | | | 212
212 | 0.36185
0.36185 | 16.884
0.22392 | -6130.8
7374.8 | 129.32
193.03 | 43.79
37.24 | 77.75
49.33 | 1101.4
254.24 | 141.7
12.34 | 120.5
6.802 | | 014 | 0.00164 | 16.70 | 5074.0 | 120.05 | 40.07 | 70.17 | 1005.4 | 100.0 | 117.0 | | 214
214 | 0.39164
0.39164 | 16.79
0.24133 | -5974.2
7431.5 | 130.05
192.69 | 43.87
37.55 | 78.17
49.90 | 1085.4
254.41 | 139.9
12.58 | 117.8
6.872 | | | | | | <u>A511</u> V | 1 D3964-13 | | | | | | 216
216 | 0.42323
0.42323 | rds 16.696
0.25976 | talo 5816.7 nda
7487.1 | ards 130.77
192.36 | a29a <mark>43.95</mark> 21e- | -413 78.60 79 - | d 1069.5
254.54 |)aa/a <mark>138.1</mark> -d3 | 3984_ 115.1
6.944 | | 040 | 0.45007 | 10.001 | 5050.0 | 101.10 | 44.04 | 70.00 | 1050.4 | 100.4 | 440.0 | | 218
218 | 0.45667
0.45667 | 16.601
0.27927 | -5658.3
7541.7 | 131.49
192.04 | 44.04
38.17 | 79.06
51.09 | 1053.4
254.62 | 136.4
13.07 | 112.6
7.016 | | | | 16 504 | | 120.01 | | | | | 110.0 | | 220
220 | 0.49205
0.49205 | 16.504
0.29989 | -5498.9
7595.2 | 132.21
191.73 | 44.13
38.49 | 79.53
51.72 | 1037.3
254.65 | 134.6
13.32 | 110.0
7.089 | | 222 | 0.52941 | 16.407 | -5338.6 | 132.93 | 44.23 | 80.02 | 1021.2 | 132.8 | 107.6 | | 222 | 0.52941 | 0.32168 | 7647.6 | 191.42 | 38.80 | 52.36 | 254.63 | 13.58 | 7.163 | | 224 | 0.56884 | 16.309 | -5177.3 | 133.64 | 44.33 | 80.54 | 1005.0 | 131.1 | 105.2 | | 224 | 0.56884 | 0.34468 | 7698.8 | 191.12 | 39.12 | 53.03 | 254.56 | 13.84 | 7.238 | | 226 | 0.6104 | 16.209 | -5015.0 | 134.35 | 44.44 | 81.07 | 988.76 | 129.4 | 102.9 | | 226 | 0.6104 | 0.36896 | 7748.7 | 190.83 | 39.43 | 53.72 | 254.44 | 14.11 | 7.313 | | 228 | 0.65416 | 16.108 | -4851.5 | 135.06 | 44.54 | 81.64 | 972.46 | 127.7 | 100.6 | | 228 | 0.65416 | 0.39457 | 7797.4 | 190.53 | 39.76 | 54.43 | 254.27 | 14.38 | 7.390 | | 230 | 0.70018 | 16.006 | -4687.0 | 135.76 | 44.66 | 82.22 | 956.09 | 126.0 | 98.34 | | 230 | 0.70018 | 0.42157 | 7844.7 | 190.25 | 40.08 | 55.18 | 254.05 | 14.66 | 7.469 | | 232 | 0.74854 | 15.903 | -4521.2 | 136.47 | 44.78 | 82.84 | 939.66 | 124.2 | 96.15 | | 232 | 0.74854 | 0.45003 | 7890.6 | 189.97 | 40.40 | 55.95 | 253.78 | 14.95 | 7.548 | | 236 | 0.85256 | 15.692 | -4186.0 | 137.87 | 45.04 | 84.16 | 906.6 | 120.9 | 91.89 | | 236 | 0.85256 | 0.51158 | 7977.9 | 189.41 | 41.06 | 57.60 | 253.07 | 15.55 | 7.712 | | 238 | 0.90836 | 15.584 | -4016.5 | 138.57 | 45.17 | 84.86 | 889.97 | 119.2 | 89.82 | | 238 | 0.90836 | 0.54482 | 8019.2 | 189.14 | 41.40 | 58.49 | 252.64 | 15.86 | 7.796 | ## TABLE 1 Continued | | TABLE 1 Continued | | | | | | | | | | | |----------------------------------|--|------------------------------------|-----------------------------------|--|--|--|--|--------------------------------------|--------------------------------------|--|--| | T
K | р
MPa | ρ
mol·l ⁻¹ | <i>H</i>
J⋅mol ⁻¹ | <i>S</i>
J⋅mol ⁻¹ ⋅K ⁻¹ | C_{ν} J·mol ⁻¹ ·K ⁻¹ | C_p J·mol ⁻¹ ·K ⁻¹ | <i>c</i>
m⋅s ⁻¹ | η
μPa⋅s | λ
mW⋅m⁻¹⋅K⁻¹ | | | | 240 | 0.96679 | 15.475 | -3845.6 | 139.27 | 45.31 | 85.61 | 873.25 | 117.5 | 87.80 | | | | 240 | 0.96679 | 0.57983 | 8058.7 | 188.87 | 41.74 | 59.42 | 252.14 | 16.18 | 7.881 | | | | 242 | 1.0279 | 15.364 | -3673.2 | 139.97 | 45.46 | 86.40 | 856.45 | 115.8 | 85.81 | | | | 242 | 1.0279 | 0.61668 | 8096.6 | 188.61 | 42.09 | 60.40 | 251.59 | 16.51 | 7.969 | | | | 244 | 1.0918 | 15.251 | -3499.3 | 140.67 | 45.61 | 87.23 | 839.57 | 114.2 | 83.86 | | | | 244 | 1.0918 | 0.65547 | 8132.5 | 188.34 | 42.44 | 61.44 | 250.98 | 16.85 | 8.059 | | | | 246 | 1.1585 | 15.136 | -3323.9 | 141.37 | 45.77 | 88.11 | 822.59 | 112.6 | 81.94 | | | | 246 | 1.1585 | 0.6963 | 8166.5 | 188.08 | 42.80 | 62.54 | 250.31 | 17.20 | 8.151 | | | | 248 | 1.2282 | 15.019 | -3146.8 | 142.06 | 45.94 | 89.04 | 805.51 | 110.9 | 80.05 | | | | 248 | 1.2282 | 0.73929 | 8198.5 | 187.81 | 43.17 | 63.71 | 249.58 | 17.56 | 8.245 | | | | 250 | 1.3008 | 14.901 | -2968.0 | 142.76 | 46.11 | 90.02 | 788.33 | 109.3 | 78.19 | | | | 250 | 1.3008 | 0.78456 | 8228.2 | 187.55 | 43.55 | 64.96 | 248.79 | 17.93 | 8.342 | | | | 252 | 1.3766 | 14.779 | -2787.4 | 143.46 | 4 6.29 | 91.08 | 771.03 | 107.7 | 76.36 | | | | 252 | 1.3766 | 0.83224 | 8255.7 | 187.28 | 4 3.93 | 66.29 | 247.93 | 18.32 | 8.442 | | | | 254 | 1.4555 | 14.656 | -2604.9 | 144.16 | 4 6.47 | 92.20 | 753.60 | 106.0 | 74.56 | | | | 254 | 1.4555 | 0.88247 | 8280.8 | 187.02 | 44.33 | 67.72 | 247.00 | 18.72 | 8.545 | | | | 256 | 1.5376 | 14.53 | -2420.3 | 144.86 | 4 6.66 | 93.39 | 736.05 | 104.4 | 72.78 | | | | 256 | 1.5376 | 0.93543 | 8303.3 | 186.75 | 44.74 | 69.26 | 246.01 | 19.14 | 8.652 | | | | 258 | 1.623 | 14.401 | -2233.7 | 145.57 | 46.87 | 94.68 | 718.36 | 102.8 | 71.03 | | | | 258 | 1.623 | 0.99127 | 8323.0 | | 45.16 | 70.91 | 244.95 | 19.57 | 8.762 | | | | 260 | 1.7118 | 14.27 | -2044.8 | 146.27 | 47.08 | 96.06 | 700.52 | 101.2 | 69.30 | | | | 260
262 | 1.7118
1.8041 | 1.0502
14.135 | 8339.9
-1853.6 | 186.21
146.98 | 45.59
1 0
47.29 | 72.71
97.55 | 243.81
682.53 | 20.02
99.64 | 8.876
67.60 | | | | 262 | 1.8041 | 1.1124 | 8353.6 | 185.94 | 46.03 | 74.67 | 242.61 | 20.50 | 8.995 | | | | 264 | 1.9 | 13.997 | -1659.8 | 147.69 | 47.52 | 99.17 | 664.38 | 98.05 | 65.91 | | | | 264 | 1.9 | 1.1782 | 8364.0 | 185.66 | 46.49 | 76.80 | 241.33 | 21.00 | 9.119 | | | | 266
266 | 1.9996
1.9996
tps://standa | 13.855
1.2478
rds iteh ai/ca | -1463.3
8370.9
talog/stand/ | 148.41
185.38 | 47.76
46.96 | 100.93
79.15 | 646.06
239.97 | 96.47
21.52 | 64.24
9.248 | | | | 268 | 2.1029 | 13.709 | -1264 | 149.12 | 4 8.01 | 102.8 | 627.58 | 94.89 | 62.58 | | | | 268 | 2.1029 | 1.3215 | 8373.9 | 185.09 | 4 7.46 | 81.75 | 238.54 | 22.08 | 9.384 | | | | 270 | 2.21 | 13.559 | -1061.5 | 149.85 | 48.27 | 105.0 | 608.92 | 93.31 | 60.94 | | | | 270 | 2.21 | 1.3998 | 8372.7 | 184.79 | 47.97 | 84.63 | 237.02 | 22.67 | 9.526 | | | | 272 | 2.321 | 13.405 | - 855.75 | 150.58 | 48.54 | 107.3 | 590.08 | 91.73 | 59.30 | | | | 272 | 2.321 | 1.4829 | 8367.0 | 184.48 | 48.51 | 87.86 | 235.42 | 23.29 | 9.676 | | | | 274 | 2.4361 | 13.245 | -646.35 | 151.31 | 48.82 | 109.9 | 571.04 | 90.16 | 57.68 | | | | 274 | 2.4361 | 1.5713 | 8356.4 | 184.17 | 49.08 | 91.51 | 233.73 | 23.97 | 9.834 | | | | 276 | 2.5554 | 13.079 | -433.02 | 152.06 | 49.11 | 112.8 | 551.77 | 88.58 | 56.06 | | | | 276 | 2.5554 | 1.6657 | 8340.3 | 183.84 | 49.68 | 95.65 | 231.95 | 24.69 | 10.00 | | | | 278 | 2.6789 | 12.907 | -215.36 | 152.81 | 49.42 | 116.1 | 532.23 | 87.01 | 54.45 | | | | 278 | 2.6789 | 1.7666 | 8318.2 | 183.5 | 50.31 | 100.4 | 230.07 | 25.47 | 10.18 | | | | 280 | 2.8067 | 12.728 | 7.0624 | 153.57 | 49.74 | 119.9 | 512.38 | 85.43 | 52.84 | | | | 280 | 2.8067 | 1.8748 | 8289.5 | 183.15 | 50.99 | 105.9 | 228.1 | 26.33 | 10.37 | | | | 282 | 2.9391 | 12.541 | 234.80 | 154.34 | 50.09 | 124.3 | 492.15 | 83.86 | 51.22 | | | | 282 | 2.9391 | 1.9913 | 8253.3 | 182.78 | 51.70 | 112.4 | 226.01 | 27.26 | 10.58 | | | | 284 | 3.076 | 12.345 | 4 68.51 | 155.13 | 50.47 | 129.4 | 471.46 | 82.28 | 49.60 | | | | 284 | 3.076 | 2.1172 | 8208.7 | 182.38 | 52.47 | 120.0 | 223.82 | 28.31 | 10.80 | | | | 286 | 3.2177 | 12.138 | 709.01 | 155.93 | 50.89 | 135.5 | 450.22 | 80.71 | 47.96 | | | | 286 | 3.2177 | 2.254 | 8154.3 | 181.96 | 53.30 | 129.3 | 221.51 | 29.47 | 11.05 | | | | 288 | 3.3643 | 11.918 | 957.38 | 156.75 | 51.37 | 142.9 | 428.34 | 79.14 | 46.30 | | |