

International Standard

ISO 5409

Stationary source emissions — Chemical absorption method for sampling and determining mercury species in flue gas

Émissions de sources fixes — Échantillonnage et détermination du mercure dans les gaz de combustion en utilisant la méthode d'absorption chimique

First edition 2024-11

iteh.ai)

https://standards.iteh.ai/catalog/standards/iso/82bfee3a-7839-4cec-8332-aaa88020eb42/iso-5409-2024

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 5409:2024

https://standards.iteh.ai/catalog/standards/iso/82bfee3a-7839-4dec-8332-aaa88020eb42/iso-5409-2024

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents			Page	
Forew	oreword			
Intro	duction		vi	
1	Scope		1	
2	-	ative references		
3		and definitions		
4		ols and abbreviated terms		
4	4.1	Symbols		
	4.2	Abbreviated terms		
5	Princi	ple	4	
6	Reagents			
	6.1	Purity of reagents		
	6.2	Purity of water		
	6.3	Reagents	5	
7	Appar	ratus	6	
	7.1	General		
	7.2	Nozzle		
	7.3 7.4	Probe liner		
	7. 4 7.5	Transfer line		
	7.6			
	7.7	FilterCyclone separator.	8	
	7.8	Filter housing	8	
	7.9	Filter heating box		
	7.10 7.11	Absorbing system Pump		
	7.11 7.12	Thermometer		
	7.13	Manometer		
	7.14	Gas meter <u>180 5409:2024</u>		
	7.15	Rotameter catalog/standards/iso/82bfee3a- /839-4dec-8332-aaa88020eb42/		
	7.16	Barometer	9	
	7.17 7.18	Ancillary equipmentImpinger		
0				
8	Sampi 8.1	ing Sampling location		
	8.2	Proper differential pressure gauge		
	8.3	Sampling volume		
	8.4	Preparation of the sampling train		
	8.5	Other measurements prior to sampling		
		8.5.1 Volumetric gas flow through duct at the sampling plane		
		8.5.2 Water vapour content 8.5.3 Oxygen content		
0				
9	9.1	ation and standardization		
	9.2	Calibration of pitot tube		
	9.3	Calibration of metering system		
	9.4	Calibration of thermometer	11	
	9.5	Leak check of the metering system	11	
10	Measurement procedure			
	10.1	Sampling operation		
	10.2	Sample recovery 10.2.1 General		
		10.4.1 UCIICI di	1 1	

		10.2.2 Recovery of ash sample	12
		10.2.3 Recovery of absorber samples	
		10.2.4 Recovery of silica gel impinger	
		10.2.5 Storage of recovered samples	
	10.3	Sample preparation	
		10.3.1 Preparation of ash sample	
		10.3.2 Preparation of solution samples	13
	10.4	Analytical procedures	13
		10.4.1 Reagent blank	13
		10.4.2 Analytical procedure for mercury in prepared solution	13
11	Oual	ity assurance/quality control	14
	11.1	General	
	11.2	QA/QC for the sampling	
		11.2.1 Absorbing system	
		11.2.2 Operation prior to sampling and during sampling	
		11.2.3 Field blank	
		11.2.4 Field spike	
		11.2.5 Leak test	
		11.2.6 Sampling in flue gas with high concentration of SO ₂	
	11.3	QA/QC for the analysis	
		11.3.1 Reagent blank	
		11.3.2 Separate mercury standard solutions	15
		11.3.3 Parallel analysis	15
		11.3.4 Independent QA/QC checks for ash samples	16
12	Exnr	ession of results	16
	12.1	Dry gas volume	
	12.2	Content of water vapour	
	12.3	Mass concentration of Hg ^P	
	12.4	Mass concentration of Hg ²⁺	18
	12.5	Mass concentration of Hg ⁰	18
	12.6	Mass concentration of Hg^0 Mass concentration of Hg^T	19
	12.7	Mass concentration of mercury in the gas stream on a dry basis at STP and reference	
		oxygen volume fractionsansanaa	20
13 1ttp	Perfe	ormance characteristics dards/iso/82bfee3a-7839-4dec-8332-aaa88020eb42/iso-5409-20	2420
10	13.1	Instrumental limits of detection	
		Evaluation of the measurement uncertainty	
14	Test	report	20
Anne		formative) Evaluation of limit of detection, limit of determination, precision and	
		racy in laboratory tests	
Anne	x B (in	formative) Results of evaluation of measurement uncertainties in field tests	29
Biblic	ograph	ıy	37

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 146, *Air quality*, Subcommittee SC 1, *Stationary source emissions*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

ISO 5409:2024

https://standards.iteh.ai/catalog/standards/iso/82bfee3a-7839-4dec-8332-aaa88020eb42/iso-5409-2024

Introduction

Mercury is a highly toxic environmental pollutant that bioaccumulates in the food chain and can have an impact on neurological health. Most of the anthropogenic mercury is emitted from stationary sources such as coal combustion plants, cement kilns, non-ferrous metal smelting operations and waste incineration facilities. The monitoring and control of mercury mass emissions from stationary sources is increasingly important for preventing global environmental pollution and health damage caused by mercury.

The transformation and fate of mercury in the atmosphere is defined by its chemical and physical forms. Additionally, the development and implementation of mercury control technologies is highly dependent on the mercury speciation at different parts of the industrial process.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 5409:2024

https://standards.iteh.ai/catalog/standards/iso/82bfee3a-7839-4dec-8332-aaa88020eb42/iso-5409-2024

Stationary source emissions — Chemical absorption method for sampling and determining mercury species in flue gas

1 Scope

This document describes a method for the sampling and determining mercury species in flue gas passing through ducts or chimney stacks. Mercury generally exists in gaseous elemental form, gaseous oxidized form and particulate-bound form. This method applies to the sampling and determination of gaseous elemental mercury (Hg^0) , gaseous oxidized mercury (Hg^{2+}) , particulate-bound mercury (Hg^P) and total mercury (Hg^T) in the flue gas from stationary sources.

This method is suitable at locations with high dust content, including locations upstream of the dust removal device with high particulate loadings in flue gas up to 120 g/m^3 .

This method is applicable to locations with sulfur dioxide (SO_2) concentration up to 0,25 % when the sampling volume is 0,5 m³ (on a dry basis as corrected to standard conditions).

The limit of detection and the limit of determination depend on the instrumental limit of detection, reagent blank, field blank, measurement technique and volume of sampled gas. When the sampling volume is 1,5 m³ (on a dry basis as corrected to standard conditions), the expected limits of detection for Hg 0 , Hg p , Hg 2 + and Hg T are 0,103 μ g/m³, 0,011 μ g/m³, 0,035 μ g/m³ and 0,127 μ g/m³, respectively. The expected limits of determination for Hg 0 , Hg p , Hg 2 + and Hg T are 0,229 μ g/m³, 0,025 μ g/m³, 0,082 μ g/m³ and 0,263 μ g/m³, respectively.

2 Normative references Document Preview

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 206542/80-5409-2024

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

ISO 9096:2017, Stationary source emissions — Manual determination of mass concentration of particulate matter

ISO 10396, Stationary source emissions — Sampling for the automated determination of gas emission concentrations for permanently-installed monitoring systems

ISO 10780:1994, Stationary source emissions — Measurement of velocity and volume flowrate of gas streams in ducts

ISO 12141, Stationary source emissions — Determination of mass concentration of particulate matter (dust) at low concentrations — Manual gravimetric method

ISO 12846:2012, Water quality — Determination of mercury — Method using atomic absorption spectrometry (AAS) with and without enrichment

ISO 17852:2006, Water quality — Determination of mercury — Method using atomic fluorescence spectrometry

ISO 20988:2007, Air quality — Guidelines for estimating measurement uncertainty

ISO 21741:2020, Stationary source emissions — Sampling and determination of mercury compounds in flue gas using gold amalgamation trap

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

gaseous elemental mercury

mercury in its elemental form in flue gas

3.2

gaseous oxidized mercury

mercury in its mercurous or mercuric oxidation states in flue gas

3.3

gaseous mercury

mercury existing both as elemental and oxidized forms passing through a filter having at least 99,5 % collection efficiency for 0,3 μ m diameter particles

3.4

particulate-bound mercury

mercury existing both as elemental or oxidized forms which are bound with particles collected by a filter having at least 99.5% collection efficiency for 0.3μ m diameter particles

3.5

sampling train

complete setup including nozzle, probe, probe liner, filter, filter housing, impingers and connectors

3.6

total mercury

summation of gaseous elemental mercury (3.1), gaseous oxidized mercury (3.2) and particulate-bound mercury (3.4) $150.5409 \cdot 2024$

3.7ttps://standards.iteh.ai/catalog/standards/iso/82bfee3a-7839-4dec-8332-aaa88020eb42/iso-5409-2024

isokinetic sampling

sampling at a flowrate such that the velocity and direction of the gas entering the sampling nozzle is the same as that of the gas in the duct at the sampling point

4 Symbols and abbreviated terms

4.1 Symbols

$B_{ m ws}$	and pressure (STP)	g/m ³
$C_{S,Hg,a}$	concentration of mercury in the prepared sample solution aliquot digested from ash of container $1\mbox{a}$	μg/ml
$C_{S,Hg,b}$	concentration of mercury in the prepared sample solution aliquot digested from ash of container $1\mbox{\ensuremath{b}}$	μg/ml
$C_{\mathrm{RS,Hg}}$	concentration of mercury in the probe rinse sample aliquot	μg/ml
$C_{\mathrm{KCl},\mathrm{Hg}}$	concentration of mercury in the prepared sample solution aliquot in container 2	μg/ml
$C_{\mathrm{KCl,b}}$	concentration of mercury in the KCl reagent blank aliquot	μg/ml

$C_{\mathrm{HNO_3-H_2O_2}}$,Hg	concentration of mercury in prepared sample solution aliquot in container 3	μg/ml
$C_{\mathrm{HNO_3-H_2O_2},\mathrm{b}}$	concentration of mercury in $\mathrm{HNO_3}\mathrm{-H_2O_2}$ reagent blank aliquot	μg/ml
$C_{\mathrm{H_2SO_4-KMnO_4}}$,Hg	concentration of mercury in prepared sample solution aliquot in container 4	μg/ml
$C_{\mathrm{H_2SO_4-KMnO_4},b}$	concentration of mercury in ${\rm H_2SO_4}{\rm -KMnO_4}$ reagent blank aliquot	μg/ml
$F_{\mathrm{D,a}}$	dilution factor obtained by dividing the total mass of ash of container 1a by the mass of ash analysed	g
$F_{\mathrm{D,b}}$	dilution factor obtained by dividing the total mass of ash of container 1b by the mass of ash analysed	g
$P_{\rm atm}$	atmospheric pressure	kPa
$P_{\rm av}$	average pressure difference between the sample gas before gas meter and atmosphere $% \left(1\right) =\left(1\right) \left(1\right$	kPa
$T_{\rm av}$	average temperature of the sample gas before gas meter	K
$V_{\rm m}$	volume of dry flue gas sample	m^3
V_{f}	final gas meter reading at the end of sampling	m^3
$V_{\rm i}$	initial gas meter reading at the beginning of sampling	m^3
V_l	volume of air drawn through the gas meter during any intermediate leak test	m^3
$V_{\rm d}$	total volume of dry gas sampled at STP	m^3
$V_{\mathrm{main},\mathrm{d}}$	volume of dry flue gas sample in the main stream, normalized to STP	m^3
$V_{\rm side,d}$	volume of dry flue gas sample in the side stream, normalized to STP	m^3
$V_{G,d}$	volume of dry flue gas sample for gaseous mercury analysis, normalized to STP	m^3
V _{S,d} https://standar	volume of dry flue gas sample for Hg ^P analysis, normalized to STP	-2024 m ³
$v_{S,a}$	volume of prepared sample solution digested from ash of container 1a	ml
$v_{S,b}$	volume of prepared sample solution digested from ash of container 1b	ml
$v_{ m RS}$	total volume of probe rinse sample	ml
$v_{ m KCl}$	total volume of solution in container 2 from which the sample aliquot was taken	ml
$v_{\mathrm{KCl,b}}$	total volume of KCl reagent blank from which the sample aliquot was taken	ml
$v_{\mathrm{HNO_3-H_2O_2}}$	total volume of solution in container 3 from which the sample aliquot was taken	ml
$v_{\mathrm{HNO_3-H_2O_2},\mathrm{b}}$	total volume of $\mathrm{HNO_3-H_2O_2}$ reagent blank from which the sample aliquot was taken	ml
$v_{\rm H_2SO_4-KMnO_4}$	total volume of solution in container 4 from which the sample aliquot was taken	ml
$v_{ m H_2SO_4-KMnO_4}$,b	total volume of $\rm H_2SO_4-KMnO_4$ reagent blank from which the sample aliquot was taken	ml
$W_{\rm il}$	mass of impinger after sampling	g
W_{i0}	mass of impinger before sampling	g

$ ho_{ m S,Hg,d}$	mass concentration of $\mbox{\rm Hg}^{\mbox{\rm P}}$ in the gas stream on a dry basis at STP	$\mu g/m^3$
$ ho_{\mathrm{Hg}^{2+},\mathrm{d}}$	mass concentration of ${\rm Hg^{2+}}$ captured by KCl impinger solution in the gas stream on a dry basis at STP	μg/m ³
$\rho_{\mathrm{Hg^0},\mathrm{HNO_3-H_2O_2},\mathrm{d}}$	mass concentration of ${\rm Hg^0}$ captured by ${\rm HNO_3-H_2O_2}$ impinger solution on a dry basis at STP	μg/m ³
$ ho_{\mathrm{Hg^0}\mathrm{,H_2SO_4-KMnO_4}\mathrm{,d}}$	mass concentration of $\rm Hg^0$ captured by $\rm H_2SO_4-KMnO_4$ impinger solution on a dry basis at STP	$\mu g/m^3$
$ ho_{{ m Hg}^0}$,d	mass concentration of Hg^0 in the gas stream on a dry basis at STP	$\mu g/m^3$
$ ho_{ ext{Hg,d}}$	mass concentration of $Hg^{\text{\scriptsize T}}$ in the gas stream on a dry basis at STP	$\mu g/m^3$
$ ho_{ m Hg,dry,ref}$	mass concentration of mercury on a dry basis at STP and reference oxygen concentration $% \left(1\right) =\left(1\right) \left(1\right) \left$	μg/m ³
$ ho_{ m Hg,dry}$	mass concentration of mercury measured during the sampling on a dry basis at STP	μg/m ³
$\varphi_{ m 0,ref}$	volume fraction of the reference oxygen	%
$arphi_{ m O,dry}$	volume fraction of the average oxygen on a dry basis measured during the sampling	%

4.2 Abbreviated terms

AAS	atomic absorption spectrometry standards. iteh. 21)
AFS	atomic fluorescence spectrometry
CVAAS	cold vapour atomic absorption spectrometry

FEP perfluoro(ethylene/propylene), tetrafluoro ethylene/hexafluoropropylene

cold vapour atomic fluorescence spectrometry 024

FGD flue gas desulfurization system

PFA perfluoroalkoxy alkane

PTFE polytetra fluoroethylene

QA/QC quality assurance/quality control

SCR selective catalytic reduction unit

STP standard temperature and pressure, 273,15 K and 101,325 kPa

5 Principle

CVAFS

Sampling for particulate-bound mercury is performed isokinetically and sampling for gaseous mercury is performed either isokinetically or non-isokinetically. Sampling for particulate-bound mercury is performed isokinetically in accordance with ISO 9096 or ISO 12141. When the flow rates for the measurement of gaseous mercury and particulate-bound mercury are the same, a main stream sampling is applied. If the flow rate for the measurement of gaseous mercury is lower than that for particulate-bound mercury, a side stream sampling is applied.

Dust in the sampled gas stream is collected on a filter whereafter the gas stream is passed through a series of impingers in an ice bath. After sampling, the filter and absorber solution are prepared and analysed for mercury in laboratory. The recovery techniques include acid leaching and digestion. The analytical techniques include but are not limited to cold vapour atomic absorption spectrometry (CVAFS, see ISO 12846) or cold vapour atomic fluorescence spectrometry (CVAFS, see ISO 17852) with and without gold amalgamation.

When sampling at locations with particulate concentration higher than 100 mg/m³, such as upstream of the dust removal device, a cyclone separator is used before the filter, the cyclone separator and filter are placed in the heated filter box. The particles fall into the ash storage flask of cyclone separator under gravity to avoid the influence of too much ash on sampling, and ensure the sampling time and speed.

6 Reagents

6.1 Purity of reagents

Unless otherwise indicated, the reagents in 6.3 are required to be of guaranteed purity.

6.2 Purity of water

Unless otherwise indicated, references to water shall be conform with grade 1 specified in ISO 3696:1987 for all sample preparations and dilutions.

6.3 Reagents

- **6.3.1** Concentrated hydrochloric acid, $\omega(HCl) = 37 \%$, $\rho(HCl) = 1,19 \text{ g/ml.}$
- **6.3.2 Hydrogen peroxide,** of a volume fraction of 30 %.
- **6.3.3** Concentrated nitric acid, $\omega(HNO_3) = 65 \%$, $\rho(HNO_3) = 1.4 \text{ g/ml}$.
- **6.3.4** Concentrated sulfuric acid, $\omega(H_2SO_4) = 98.3 \%$, $\rho(H_2SO_4) = 1.84 \text{ g/ml}$.
- **6.3.5** Potassium chloride solution, c(KCl) = 1 mol/l.

Add 74,56 g of KCl slowly to a 1 000 ml volumetric flask containing approximately 500 ml of water with stirring, and then add water to make a volume of 1 000 ml with stirring. A new batch of solution should be made prior to each field test.

6.3.6 HNO₃-H₂O₂ solution, of a volume fraction of 5 % HNO₃ and of 10 % H₂O₂.

Add 50 ml of concentrated HNO $_3$ (6.3.3) to a 1 000 ml volumetric flask containing approximately 500 ml of water slowly with stirring, and then add 333 ml of a volume fraction of 30 % of $\rm H_2O_2$ (6.3.2) with stirring. Dilute with water to make a volume of 1 000 ml with stirring. A new batch of solution should be made prior to each field test.

6.3.7 H_2SO_4 -KMnO₄ solution, $\omega(KMnO_4) = 4$ %, and a volume fraction of 10 % of H_2SO_4 .

Add slowly 100 ml of concentrated sulfuric acid (6.3.4) to a 1 000 ml volumetric flask containing approximately 600 ml of water while cooling and stirring, and then add water with stirring to make a volume of 1 000 ml. This solution is a volume fraction of 10 % of $\rm H_2SO_4$.

Mix slowly 40 g of $KMnO_4$ to a 1 000 ml volumetric flask containing approximately 800 ml of a volume fraction of 10 % of H_2SO_4 with stirring, and then add a volume fraction of 10 % of H_2SO_4 with stirring to make a volume of 1 000 ml.

- **6.3.8** Concentrated hydrofluoric acid, $\omega(HF) = 40 \%$, $\rho(HF) = 1,16 \text{ g/ml.}$
- **6.3.9** Rinse solution, $\omega(HNO_3) = 50 \text{ g/kg}$.

In accordance with ISO 21741, take 77 g of concentrated nitric acid (6.3.3) in a fluoroplastic bottle made of PTFE, PFA or FEP, and add water to make a total weight of 1 kg.

6.3.10 Potassium permanganate solution, of ω = 5 %.

Mix 25 g of KMnO₄ into water, dilute to 500 ml and stir vigorously.

6.3.11 Hydroxylamine hydrochloride solution, of $\omega = 10 \%$.

Mix 50 g of NH₂OH·HCl slowly to a 500 ml volumetric flask containing approximately 300 ml of water with stirring and then add water while stirring to make a volume of 500 ml.

- **6.3.12 Mercury stock solution**, conforming with mercury standard solution as specified in ISO 12846 and ISO 17852.
- **6.3.13 Silica gel**, of a self-indicating coarse grade.
- **6.3.14 Boric acid** (H₃BO₃), solid.

7 Apparatus

iTeh Standards

7.1 General

Two types of sampling systems, a main stream arrangement and a side stream arrangement, can be employed. Schematics of both systems are given in Figure 1. In the main stream system all the sampled flue gas is passed through the filter and impinger solution, while in the side stream arrangement only a part of the sampled flue gas is passed through the impingers. The main stream sampling is used if the flow rate and total sampling volume for the measurements of gaseous mercury and particulate-bound mercury are the same. The side stream sampling is used when the flow rate or total sampling volume for the measurements of gaseous mercury and particulate-bound mercury is different. For example, to some measurement objects, such as non-ferrous metal smelting industry, the concentration of SO_2 and mercury is extremely high, and this can cause the sampling train to be over-loaded even with small amount of sampled flue gas.

The apparatus consists of a sampling probe including a nozzle and filter assembly that shall be heated if the flue gas temperature is lower than 393 K. The absorbing system consists of eight impingers immersed in an ice bath, a manometer, a pump, a gas meter and a rotameter. A thermometer and manometer shall be included in the sampling train to measure the temperature and pressure of the metered gas. A barometer shall be used to measure atmospheric pressure during the test in order that the volume of the gas sampled can be normalized to the STP condition.