

Designation: A312/A312M - 13a

Usedin USDOE-NE standards

Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes¹

This standard is issued under the fixed designation A312/A312M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification² covers seamless, straight-seam welded, and heavily cold worked welded austenitic stainless steel pipe intended for high-temperature and general corrosive service.

Note 1-When the impact test criterion for a low-temperature service would be 15 ft·lbf [20 J] energy absorption or 15 mils [0.38 mm] lateral expansion, some of the austenitic stainless steel grades covered by this specification are accepted by certain pressure vessel or piping codes without the necessity of making the actual test. For example, Grades TP304, TP304L, and TP347 are accepted by the ASME Pressure Vessel Code, Section VIII Division 1, and by the Chemical Plant and Refinery Piping Code, ANSI B31.3, for service at temperatures as low as -425 °F [-250 °C] without qualification by impact tests. Other AISI stainless steel grades are usually accepted for service temperatures as low as -325 °F [-200 °C] without impact testing. Impact testing may, under certain circumstances, be required. For example, materials with chromium or nickel content outside the AISI ranges, and for material with carbon content exceeding 0.10 %, are required to be impact tested under the rules of ASME Section VIII Division 1 when service temperatures are lower than -50 °F [-45 °C].

- 1.2 Grades TP304H, TP309H, TP309HCb, TP310H, TP310HCb, TP316H, TP321H, TP347H, and TP348H are modifications of Grades TP304, TP309Cb, TP309S, TP310Cb, TP310S, TP316, TP321, TP347, and TP348, and are intended for service at temperatures where creep and stress rupture properties are important.
- 1.3 Optional supplementary requirements are provided for pipe where a greater degree of testing is desired. These supplementary requirements call for additional tests to be made and, when desired, it is permitted to specify in the order one or more of these supplementary requirements.
- 1.4 Table X1.1 lists the standardized dimensions of welded and seamless stainless steel pipe as shown in ANSI B36.19.

These dimensions are also applicable to heavily cold worked pipe. Pipe having other dimensions is permitted to be ordered and furnished provided such pipe complies with all other requirements of this specification.

- 1.5 Grades TP321 and TP321H have lower strength requirements for pipe manufactured by the seamless process in nominal wall thicknesses greater than 3/8 in. [9.5 mm].
- 1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the "M" designation of this specification is specified in the order.

Note 2—The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as "nominal diameter," "size," and "nominal size."

2. Referenced Documents

2.1 ASTM Standards:³

A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

A999/A999M Specification for General Requirements for Alloy and Stainless Steel Pipe

A1016/A1016M Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes

E112 Test Methods for Determining Average Grain Size
E381 Method of Macroetch Testing Steel Bars, Billets,
Blooms, and Forgings

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloysand is the direct responsibility of Subcommittee A01.10 on Stainless and Alloy Steel Tubular Products.

Current edition approved May 1, 2013. Published June 2013. Originally approved in 1948. Last previous edition approved in 2013 as A312/A312M-13. DOI: 10.1520/A0312_A0312M-13A.

 $^{^2\,\}mbox{For ASME}$ Boiler and Pressure Vessel Code applications see related Specification SA-312 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ANSI Standards:⁴

B1.20.1 Pipe Threads, General Purpose

B36.10 Welded and Seamless Wrought Steel Pipe

B36.19 Stainless Steel Pipe

2.3 ASME Standard:

ASME Boiler and Pressure Vessel Code: Section VIII⁵

2.4 AWS Standard:

A5.9 Corrosion-Resisting Chromium and Chromium-Nickel Steel Welding Rods and Electrodes⁶

2.5 Other Standard:

SAE J1086 Practice for Numbering Metals and Alloys (UNS)⁷

3. Terminology

- 3.1 Definitions:
- 3.1.1 The definitions in Specification A999/A999M and Terminology A941 are applicable to this specification.

4. Ordering Information

4.1 Orders for material to this specification shall conform to the requirements of the current edition of Specification A999/A999M.

5. General Requirements

- 5.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification A999/A999M unless otherwise provided herein.
 - 5.2 Heat Treatment:
- 5.2.1 All pipe shall be furnished in the heat—treated condition in accordance with the requirements of Table 2. The heat—treatment procedure, except for "H" grades, S30815, S31035, S31272, S31254, S32654, N08020, N08367, N08904, N08925, and N08926 shall consist of heating the pipe to a minimum temperature of 1900 °F [1040 °C] and quenching in water or rapidly cooling by other means.

6. Materials and Manufacture

- 6.1 Manufacture:
- 6.1.1 The pipe shall be manufactured by one of the following processes:
- 6.1.2 *Seamless (SML) pipe* shall be made by a process that does not involve welding at any stage of production.
- 6.1.3 Welded (WLD) pipe shall be made using an automatic welding process with no addition of filler metal during the welding process.
- ⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.
- ⁵ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990, http://www.asme.org.
- ⁶ Available from American Welding Society (AWS), 550 NW LeJeune Rd., Miami, FL 33126, http://www.aws.org.
- 7 Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.

- 6.1.4 Heavily cold-worked (HCW) pipe shall be made by applying cold working of not less than 35 % reduction in thickness of both wall and weld to a welded pipe prior to the final anneal. No filler shall be used in making the weld. Prior to cold working, the weld shall be 100 % radiographically inspected in accordance with the requirements of ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, latest revision, Paragraph UW-51.
- 6.1.5 Welded pipe and HCW pipe of NPS 14 and smaller shall have a single longitudinal weld. Welded pipe and HCW pipe of a size larger than NPS 14 shall have a single longitudinal weld or shall be produced by forming and welding two longitudinal sections of flat stock when approved by the purchaser. All weld tests, examinations, inspections, or treatments shall be performed on each weld seam.
- 6.1.6 At the option of the manufacturer, pipe shall be either hot finished or cold finished.
- 6.1.7 The pipe shall be free of scale and contaminating exogenous iron particles. Pickling, blasting, or surface finishing is not mandatory when pipe is bright annealed. The purchaser is permitted to require that a passivating treatment be applied to the finished pipe.
- 6.2 Heat Treatment—All pipe shall be furnished in the heat-treated condition in accordance with the requirements of Table 2. Alternatively, for seamless pipe, immediately following hot forming while the temperature of the pipes is not less than the minimum solution treatment temperature specified in Table 2, pipes shall be individually quenched in water or rapidly cooled by other means (direct quenched).

7. Chemical Composition

7.1 The steel shall conform to the requirements as to chemical composition prescribed in Table 1.

8. Product Analysis ab 6 (38b/astm-a312-a312m-13a

8.1 At the request of the purchaser, an analysis of one billet or one length of flat-rolled stock from each heat, or two pipes from each lot shall be made by the manufacturer. A lot of pipe shall consist of the following number of lengths of the same size and wall thickness from any one heat of steel:

NPS Designator
Under 2
400 or fraction thereof
2 to 5
200 or fraction thereof
6 and over

Lengths of Pipe in Lot
400 or fraction thereof
100 or fraction thereof

- 8.2 The results of these analyses shall be reported to the purchaser or the purchaser's representative, and shall conform to the requirements specified in Section 7.
- 8.3 If the analysis of one of the tests specified in 8.1 does not conform to the requirements specified in Section 7, an analysis of each billet or pipe from the same heat or lot may be made, and all billets or pipe conforming to the requirements shall be accepted.

9. Permitted Variations in Wall Thickness

9.1 In addition to the implicit limitation of wall thickness for seamless pipe imposed by the limitation on weight in Specification A999/A999M, the wall thickness for seamless and welded pipe at any point shall be within the tolerances

l Requirements
l Req
Chemical
TABLE 1
ps:/

	Other																								W 2.0- 4.0 Co 1.0- 2.0
	Alum- inum	:					:	:								0.80-	00.								
	Boron	:					:	:								:									0.002-
	Cerium	:	:	:	:	:	:	:	:	:	:	0.03-	3 :	:	:	:	0.03	S :		:			:		
	Copper	:	:	:	:	:	:	1.00	:	:	:	:	:	:	0.50	. нах . нах	÷		:					:	3.5
	Vana- dium	:	0.10-) .) . ; .	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	Nitro-gen $^{\mathcal{C}}$	0.15-	0.20	0.15	0.15	0.20	0.25	0.10	:	:	:	0.12-	0.10	0.16	8r.0 8 ·	:	0.14		:	:	÷	0.10	:	:	0.15-
	Tanta- lum, max	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
в%	Colum- bium	:	0.10-) .) . ; .	:	:	:	ir	Fe	h	S	ita	a in	d	a:1	rd	S	:	:	10 × C min,	10 × C min,	:	:	:	0.30-
Composition, %B	Tita- nium	:	:	:	Ċ	h t	fr	İ	- //	si	<u> </u>	ni		i	dis		tė	h	2	<u>,</u>	:	:	:	:	
Com	Molyb- denum	:	1.50-	3 :	:	÷	D	ò	Ċl	in	n i	ė'n	ť	P	0.20	Vi	ė	0.75	:	0.75	0.75	0.10	0.75	:	
	Nickel	1.50-	3.00 11.5–	5.5-	5.5	2.3	3.5	4.0-	8.0-	8.0-	8.0-	2.62	0.83	8.0-	14.0-	313.5- -2.51- -2.51- -2.51- -2.51- -2.51- -2.51- -2.51- -2.51- -2.51- -3	10.0	12.0-	12.0-	12.0 - 16.0	12.0 - 16.0	19.0-	19.0-	19.0-	23.5-
/sta	Chrom-ium-ium-ium-ium-ium-ium-ium-ium-ium-iu	15.0-	20.5- 23.5-	19.0	19.0-	17.0-	16.0-	16.0-	18.0-	18.0	18.0-	18.0-	18.0	18.0-	17.0-	17.0-	20.0-	25.0 - 0.52	22.0-	22.0- 24.0	22.0	24.0-	24.0-	24.0-	23.5 23.5 23.5
	Silicon	1.00	1.00	1.00	1.00	1.00	1.00	0.75	1.00	1.00	1.00	1.00-	1.00	1.00	3.7-	8. % -2. c	0.4.0	1.00	1.00	1.00	1.00	0.15	1.00	1.00	0.40
	Sulfur	0:030	0:030	0:030	0:030	0:030	0:030	0.015	0:030	0:030	0:030	0:030	0:030	0:030	0.02	0.03	0:030	0:030	0:030	0:030	0:030	0.015	0:030	0:030	0.015
	Phos- phorus	0.045	0.045	0.045	0.045	0.060	090.0	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.02	0.030	0.040	0.045	0.045	0.045	0.045	0.020	0.045	0.045	0.030
	Manga- nese	7.0-	0.4	8.0-	8.0-	11.5	5.5-	6.4-	2.00	2.00	2.00	08.0	2.00	2.00	2.00	2.00	08.0	2.00	2.00	2.00	2.00	2.00	2.00	2.00	0.60
	Carbon	0:030	90.0	0.08	0.04	0.08	0.15	0.03	0.08	0.035 ^D	0.04-	0.04-	0.08	0.035	0.018	0.16	0.05-	0.08	0.04	0.08	0.04-	0.015	0.08	0.04-	0.04-
-	Desig- nation ^A	S20400	S20910	S21900	S21904	S24000	S20100	S20153	S30400	S30403	S30409	S30415	S30451	S30453	230600	S30615	S30815	830908	830909	S30940	S30941	S31002	831008	S31009	S31035
	Grade	:	TPXM-19	TPXM-10	TPXM-11	TPXM-29	TP201	TP201LN	TP304	TP304L	ТР304Н	:	TP304N	TP304LN	:	:	:	TP309S	ТР309Н	TP309Cb	тР309НСЬ		TP310S	ТР310Н	

		Other									יושי																	
		Alum- inum										:							÷	:					0.025			
		Boron					0.004-					:							:	:					:	:		
		Cerium	:		:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0.05-	2 :	:	:
		Copper			:	0.50-		0.50-	:	:	:	:	:	:	:	:	0.75	0.75	2.8-	: :	:	:	1.50-	0.30-	:	:	:	:
		Vana- dium	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		Nitro- ${\sf gen}^{C}$:	:	0.09-	0.18		0.30-	:	:	:	0.10	0.10-	0.10	} :	:	0.10	0.10	0.15-	0.17-	0.10	0.10	:	0.45-	:	0.40-	3 :	:
		Tanta- lum, max	:	:	:	:			:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:		:	:
Ą	%В	Colum- bium	10 × C min,	10 × C min, 1.10 max	:	:			:7	Te.	i	Śt	ar	ı id	i	r(İġ	:	:	:	:	:	:	:	0.60-	0.10	-	٦
Continued	Composition, $^{\mathcal{B}}$	Tita- nium	:	:	:	(i)	0.30-	8	<u>.</u>	/:/	git.	5x (C+N)	2	air		a i i	1:0	h		<u>;)</u>	9	I	:	:	:	:	:	:
	Comp	Molyb- denum	0.75	0.75	1.6- 2.6	6.9	0.1.		3.00	3.00	2.00-		2.00-	2.00-	3.0-	3.0-	6 4 c	-0.4	3.8-	5.0-	2 :	:	0.30-	7.0-	:	4.0-) :) :	:
TABLE 1		Nickel de	19.0-	19.0–	20.5-					10.0-			11.0- 14.0 ^E		1	V		14.5-			0.0.4	9.0-			33.0		9.0-	9.0 - 13.0
http	s://	Chrom- ium	24.0-	24.0-1	24.0-	100	ator	، ا م	1 /	16.0-	I M	A31	16.0- 18.0-	312 30 4	<u> </u>	13a	0.2	1-0	1.1.1	- 6 6	01.	/ tu		10	- 2 1		1.2	
		Silicon	1.00	1.00	0.4	0.80	0.25-		1.00	1.00	1.00	0.75	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.8		0:30	1.00	1.00	1.00
		Sulfur	0.030	0:030	0.015	0.010	0.015	0.010	0:030	0:030	0.030	0.030	0:030	0:030	0:030	0:030	0:030	0:030	0:030	0.010	0:030	0:030	0:030	0.005	0.015	0.010	0:030	0.030
		Phos- phorus	0.045	0.045	0.020	0.030	0.030	0.030	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.040 ^F	0.040 ^F	0.030	0.030	0.045	0.045	0.045	0.030	0.020	0.030	0.045	0.045
		Manga- nese	2.00	2.00	2.00	1.00	1.5-	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	1.00	2.00	2.00	2.00	2.0-	1.00	5.0-	2.00	2.00
		Carbon	0.08	0.04-	0.025	0.020	0.08-	0.020	0.08	0.035 ^D	0.04-	0.08	0.08	0.035	0.08	0.035	0.03	0.03	0.03	0.03	0.08	0.04-	0.07	0.020	0.04-	0.03	0.08	0.04-
	ON	Desig- nation ^A	S31040	S31041	S31050	S31254	S31272	S31277	S31600	S31603	S31609	S31635	S31651	S31653	S31700	S31703	S31725	S31726	S31727	S32053	S32100	832109	S32615	S32654	833228	S34565	S34700	S34709
		Grade	TP310Cb	ТР310НСЬ	:	:			TP316	TP316L	ТР316Н	тР316Ті	TP316N	TP316LN	TP317	TP317L	:	:	:	:	TP321	TP321H	:	:	:	:	TP347	ТР347Н

Continued	
TABLE 1	

	Other																		Fe ²	39.5 min.	Fe ²	39.5 min.	Fe ²	39.5 min.						
	Alum- inum	:					0.15-	09:0	:				0.30		:		:		0.15-					_	:		:		:	
	Boron	:					:		:				:		:		:		:		:		:		:		:		:	
	Cerium	:		:	:		:		0.03-	0.08	:		:		:		:		:		:		:		:		:		:	
	Copper	:		:	:		0.75		:		:		0.75-	1.50	3.0-	4.0	0.75		0.75		0.75		0.75		1.00-	2.00	0.80	1.50	0.50-	1.50
	Vana- dium	:			:		:		:		:		:		:		:		:		:		:		:		:		:	
	Nitro-gen $^{\mathcal{C}}$	-90.0	0.10	:	:		:		0.12-	0.18	:		:		:		0.18-	0.25	:		:		:		0.10		0.10	0.20	0.15-	0.25
	Tanta- lum, max	:	010	2	0.10		:		:		:		:		>		:		:		:		:		:		:		:	
в%	Colum- bium	0.20_	0.50*		7		:		:	j	÷		e	ŀ	2		5	t	2		1	d			ï	•		S	:	
Composition, %B	Tita- nium	:		: (ni	0.15-	09.0	Ċ		:	./	//	S	ŧ	2	:		Ċ		0.15-	09.0	0.15-	0.60M	S		i			h
Con	Molyb- denum	:		:	:		:	I) (C	0.75-	1.50	2.0-	3.0	-0.9	7.0	1	t	;	P	i	•	4.0-	2.0	6.0-	7.0	6.0-	7.0
	Nickel	-0.6	13.0	13.0	9.0-	13.0	32.0-	37.0	34.0-	36.0	17.5-	18.5	15.0-	17.0	32.0-	38.0	23.5-	25.5	30.0-	35.0	30.0-	35.0	30.0-	35.0	23.0-	28.0	24.0-	26.0	24.0-	26.0
arc	Chrom- ium-	17.0-	19.0	19.0	17.0-	19.0	25.0-	29.0	24.0-	26.0	17.0-	19.0	13.0-	15.0	19.0-	21.0	20.0-	22.0	19.0-	23.0	19.0-	23.0	19.0-	23.0	19.0-	23.0	19.0-	21.0	19.0-	21.0
	Silicon	1.00	9	2	1.00		9.		1.20-	5.00	1.50-	2.50	5.5-	6.5	1.00		1.00		1.00		1.00		1.00		1.00		0.50		0.50	
	Sulfur	0.030	0.030	9	0.030		0.015		0.030		0.030		0.020		0.035		0.030		0.015		0.015		0.015		0.030		0.030		0.010	
	Phos- phorus	0.045	0.045	2	0.045		:		0.040		0.030		0.040		0.045		0.040		0.045		0.045		0.045		0.040		0.045		0.030	
	Manga- nese	2.00	000	ì	2.00	i	1.50		2.00		2.00		2.00		2.00		2.00		1.50		1.50		1.50		2.00		1.00		2.00	
	Carbon	0.005-	0.020	9	0.04	0.10	-90:0	0.10	0.04	0.08	0.08		0:030		0.07		0:030		0.10		0.05-	0.10	-90.0	0.10	0.020		0.020		0.020	
OINI	Desig- nation ^A	S34751	S34800	2	S34809		S35045		S35315		S38100		S38815		N08020		N08367		N08800		N08810		N08811		N08904		N08925		N08926	
	Grade	TP347LN	TP348)	ТР348Н		:		:		TPXM-15		:		Alloy 20		:		800		H008				:		:		:	

⁴ New designation established in accordance with Practice E527 and SAE J1086.

B Maximum, unless otherwise indicated. Where elipses (...) appear in this table, there is no requirement and analysis for the element need not be determined or reported.

D For small diameter of thin walls or both, where many drawing passes are required, a carbon maximum of 0.040 % is necessary in grades TP304L and TP316L. Small outside diameter tubes are defined as those less than 0.500 in. [12.7 mm] in outside diameter and light wall tubes as those less than 0.049 in. [1.20 mm] in average wall thickness (0.044 in. [1.10 mm] in minimum wall thickness).

^E For welded TP316, TP316N, TP316LN, and TP316H pipe, the nickel range shall be 10.0-14.0 %.

^F For welded pipe, the phosphorus maximum shall be 0.045 %.

^GTi 5 × (C+N) min, 0.70 max.

^HTi $4 \times (C+N)$ min, 0.60 max.

The columbium content shall be not less than ten times the carbon content and not more than 1.00 %.

K Grade S34751 shall have a columbium (niobium) content of not less than 15 times the carbon content. The columbium content shall be not less than eight times the carbon content and not more than 1.0 %.

⁴Iron shall be determined arithmetically by difference of 100 minus the sum of the other specified elements.

W(Al+Ti) 0.85 - 1.20. N Columbium (Nb) + Tantalum = 8 × Carbon min, 1.00 max.

TABLE 2 Annealing Requirements

Grade or UNS Designation ^A	Heat Treating Temperature ⁸	Cooling/Testing Requirements
All grades not individually listed below:	1900 °F [1040 °C]	С
TP321H, TP347H, TP348H		
Cold finished	2000 °F [1100 °C]	D
Hot finished	1925 °F [1050 °C]	D
ГР304H, ТР316H		
Cold finished	1900 °F [1040 °C]	D
Hot finished	1900 °F [1040 °C]	D
TP309H, TP309HCb, TP310H, TP310HCb	1900 °F [1040 °C]	D
330600	2010-2140 °F	D
	[1100-1170 °C]	
S30815, S31272	1920 °F [1050 °C]	D
S31035	2160–2280 °F	D
	[1180-1250 °C]	
S31254, S32654	2100 °F [1150 °C]	D
331277	2050 °F [1120 °C]	D
S31727, S32053	1975–2155 °F	D
	[1080-1180 °C]	
533228	2050–2160 °F	D
	[1120-1180 °C]	
S34565	2050–2140 °F	D
	[1120-1170 °C]	
S35315	2010 °F [1100 °C]	D
338815	1950 °F [1065 °C]	D
N08367	2025 °F [1110 °C]	D
N08020	1700–1850 °F	D
	[925-1010 °C]	
N08810	2050 °F [1120 °C]	D
N08811	2100 °F [1150 °C]	D
N08904	2000 °F [1100 °C]	D
N08925, N08926	2010–2100 °F [1100–1150 °C]	D

^A New designation established in accordance with Practice E527 and SAE J1086.

specified in Table 3, except that for welded pipe the weld area

TABLE 3 Permitted Variations in Wall Thickness

	Tolerance, %	from Nominal
NPS Designator	Over	Under
1/8 to 21/2 incl., all t/D ratios	20.0	12.5
3 to 18 incl., t/D up to 5 % incl.	22.5	12.5
3 to 18 incl., t/D > 5 %	15.0	12.5
20 and larger, welded, all t/D ratios	17.5	12.5
20 and larger, seamless, t/D up to 5 % incl.	22.5	12.5
20 and larger, seamless, t/D > 5 %	15.0	12.5

where:

shall not be limited by the "Over" tolerance. The wall thickness and outside diameter for inspection for compliance with this requirement for pipe ordered by NPS and schedule number is shown in Table X1.1.

10. Tensile Requirements

10.1 The tensile properties of the material shall conform to the requirements prescribed in Table 4.

11. Mechanical Tests, Grain Size Determinations, and Weld Decay Tests Required

- 11.1 Mechanical Testing Lot Definition— The term lot for mechanical tests shall be as follows:
- 11.1.1 Where the final heat treated condition is obtained, consistent with the requirements of 6.2, in a continuous furnace, by quenching after hot forming or in a batch-type furnace equipped with recording pyrometers and automatically controlled within a 50 °F [30 °C] or lesser range, the term *lot* for mechanical tests shall apply to all pipes of the same specified outside diameter and specified wall thickness (or schedule) that are produced from the same heat of steel and subjected to the same finishing treatment within the same operating period.
- 11.1.2 Where the final heat treated condition is obtained, consistent with the requirements of 6.2, in a batch-type furnace not equipped with recording pyrometers and automatically controlled within a 50 °F [30 °C] or lesser range, the term *lot* shall apply to the larger of: (a) each 200 ft [60 m] or fraction thereof and (b) those pipes heat treated in the same furnace batch charge for pipes of the same specified outside diameter and specified wall thickness (or schedule) that are produced from the same heat of steel and are subjected to the same finishing temperature within the same operating period.
- 11.2 Transverse or Longitudinal Tension Test—One tension test shall be made on a specimen for lots of not more than 100 pipes. Tension tests shall be made on specimens from two tubes for lots of more than 100 pipes.
- 11.3 Flattening Test—For material heat treated in a continuous furnace, by quenching after hot forming or in a batch-type furnace equipped with recording pyrometers and automatically controlled within a 50 °F [30 °C] or lesser range, flattening tests shall be made on a sufficient number of pipe to constitute 5 % of the lot, but in no case less than 2 lengths of pipe. For material heat treated in a batch-type furnace not equipped with recording pyrometers and automatically controlled within a 50 °F [30 °C] or lesser range, flattening tests shall be made on 5 % of the pipe from each heat treated lot.
- 11.3.1 For welded pipe a transverse-guided face bend test of the weld may be conducted instead of a flattening test in accordance with the method outlined in the steel tubular product supplement of Test Methods and Definitions A370. For welded pipe with a specified wall thickness over ³/₈ in., two side bend tests may be made instead of the face bend test. The ductility of the weld shall be considered acceptable when there is no evidence of cracks in the weld or between the weld and the base metal after bending. Test specimens from 5 % of the lot shall be taken from the pipe or test plates of the same

^B Minimum, unless otherwise stated.

^C Quenched in water or rapidly cooled by other means, at a rate sufficient to prevent re-precipitation of carbides, as demonstrable by the capability of pipes, heat treated by either separate solution annealing or by direct quenching, of passing Practices A262, Practice E. The manufacturer is not required to run the test unless it is specified on the purchase order (see Supplementary Requirement S7). Note that Practices A262 requires the test to be performed on sensitized specimens in the low-carbon and stabilized types and on specimens representative of the as-shipped condition for other types. In the case of low-carbon types containing 3 % or more molybdenum, the applicability of the sensitizing treatment prior to testing shall be a matter for negotiation between the seller and the nurchaser

purchaser.

Description Quenched in water or rapidly cooled by other means.

t = Nominal Wall Thickness

D = Ordered Outside Diameter