ISO/TC 22/SC 37/WG 2

Secretariat: DIN

Date: 2023-2-1508-2

Fuel cell road vehicles — Cold start performances under sub-zero temperature — Vehicles fuelled with compressed hydrogen

iTeh STANDARD PREVIEW

DIR <u>Véhicules routiers à piles à combustible — Performances de démarrage à froid à des</u> températures inférieures à zéro — Véhicules alimentés en hydrogène comprimé

> https://standards.iteh.ai/catalog/standards/sist/2208633b-ff2d-429(-8a78-911f92108ed6/isodtr-17326

FDIS stage

Warning for WDs and CDs

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

A model manuscript of a draft International Standard (known as "The Rice Model") is available at

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: + 41 22 749 01 11 EmailE-mail: copyright@iso.org Website: www.iso.orgwww.iso.org

Published in Switzerland

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 17326

https://standards.iteh.ai/catalog/standards/sist/2208633b-ff2d-4290-8a78-911f92108ed6/isodtr-17326

Contents

Forewordiv				
1	Scope1			
2	Normative references1			
3	Terms and definitions1			
4	Abbreviated terms2			
5	Test instrumentation			
6	Vehicle conditions3			
7	Test temperature conditions			
8	Test methods			
9	Test data processing			
10	Test records			
Annex	x A (informative) Test process7			
Annex	x B (informative) Energy consumption data processing method8			
	x C (informative) Test records for cold start performances of FCHEV under sub-zero temperature			
Bibliography				

alog/standards/sist/2208633h_ff7d_4290_5

dtr-17320

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documentsdocument should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn[SO draws attention to the possibility that some of the elementsimplementation of this document may beinvolve the subjectuse of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents, ISO shall not be held development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22 *Road vehicles*, Subcommittee SC 37, *Electrically propelled vehicles*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Fuel cell road vehicles — Cold start performances under sub-zero temperature — Vehicles fuelled with compressed hydrogen

1 Scope

This document describes the test methods for the cold start performances of fuel cell hybrid electric vehicles (FCHEV) under sub-zero temperature conditions.

This document applies to fuel cell hybrid electric vehicles (FCHEV) as passenger cars and light duty trucks with a maximum authorized total mass of 3 500 kg (hereinafter referred to as vehicle) and fuelled with compressed hydrogen.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/TR 8713, Electrically propelled road vehicles — Vocabulary

23 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/TR 8713 and the following apply.

ISO and IEC maintain terminologicalterminology databases for use in standardization at the following addresses:

ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

- ----IEC Electropedia: available at https://www.electropedia.org/sist/2208633b-ff2d-429(-8a78-911f92108ed6/iso-

23.1 ADT applicable driving test

single driving test schedule which is specified for a relevant region

Note 1 to entry: Chassis dynamometer test schedules for a relevant region are the <u>Worldwide Lightworldwide light</u> duty <u>Test Cycletest cycle</u> (WLTC) or the <u>Urban Dynamometer Driving Scheduleurban dynamometer driving</u> <u>schedule</u> (UDDS), for example.).

[SOURCE: ISO 23274-2:2021, 3.1]

3.2 fuel cell hybrid electric vehicle FCHEV fuel cell hybrid electric vehicle electrically propelled vehicle with a <u>rechargeable energy storage system (RESS) (3.6)</u> and a fuel cell system as power sources for vehicle propulsion

[SOURCE: ISO/TR 8713:201923828:2022, 3.7]

<u>23</u>.3

fuel cell stack

assembly of two or more fuel cells, which are electrically connected

[SOURCE: ISO/TR 8713:2019 6469-3:2021, 3.20]

<u>23</u>.4

fuel cell system

system typically containing the following subsystems: fuel cell stack (3.3.), air processing system, fuel processing system, thermal management, water management, and their control system

[SOURCE: ISO/TR 8713:2019 6469-3:2021, 3.21]

<u>23</u>.5

rated power of the fuel cell system

the maximum continuous power output from the fuel cell system (3.4) as specified by the vehicle manufacturer.

<u>23</u>.6

RESS rechargeable energy storage system

DESS

rechargeable system that stores energy for delivery of electric energy for the electric drive

EXAMPLE Battery, capacitor, flywheel.

[SOURCE: ISO/TR 8713 6469-1:2019, 3.117]

<u>23</u>.7

RESS SOC

RESS state of charge and ards. iteh.ai/catalog/standards/sist/2208633b-ff2d-4290-8a78-911f92108ed6/iso-RESS SOC

residual capacity of *rechargeable energy storage system (RESS)* (3.6RESS) available to be discharged

[SOURCE: ISO/TR 8713:201911954:2023, 3.12511]

34 Symbols and abbreviated Abbreviated terms

ECU	electronic control unit
VIN	vehicle identification number
<u>ECU</u>	<u>electronic control unit</u>
VIN	vehicle identification number

4<u>5</u>Test instrumentation

The test instrumentation has the accuracy levels as given in <u>Table 1,</u> unless otherwise specified in the relevant regional ADT standard.

Table 1 — Accuracy of measured values⁴ values⁴

Item	Unit	Accuracy
Time	S	±0,1 s

+ If necessary, DC current and voltage accuracy are specified by the vehicle manufacturer.

© ISO 2023 - All rights reserved

2

Item	Unit	Accuracy		
Distance	m	±0,1 %		
Speed	km/h	±1 %		
Mass	kg	±0,5 %		
Temperature	<u>°°°</u>	±1 <u> </u>		
a If necessary, DC current and voltage accuracy are specified by the vehicle manufacturer.				

56 Vehicle conditions

The vehicle conditions are the following:

- the outline structure and technical parameters of the vehicle is maintained by default.
- the viscosity of the lubricating oil for mechanical moving parts is based on the vehicle manufacturer's requirements;
- the corresponding coolant is selected for a variety of ambient temperatures according to the vehicle manufacturer's requirements;
- ISO 14687 and the equivalent regional standard apply to the test fuel.

67_Test temperature conditions

From the beginning of the soak to the end of the test, the test temperature is controlled within +2 K of the set temperature.

The test temperature is set in agreement with the vehicle manufacturer. It is preferable -7 °C, but not higher than 0 °C and not lower than -30 °C.

The air temperature is measured at the test chamber's cooling fan outlet at a minimum frequency of 0,1 Hz.

For the soak area, the sensor is at least 10 cm away from the wall of the soak area and shielded from direct air flow.

78_Test methods

7.18.1 General

The whole test process is given in Figure A.1 Figure A.1 in Annex A.

7.28.2 Soak method under sub-zero temperature

The vehicle is soaked according to the following steps:

- a) Before the start of the soak, it is possible to adjust the vehicle state and the rechargeable energy storage system (RESS) state of charge (SOC) in accordance with the vehicle manufacturer's requirements. The adjustment duration, *t*, the RESS SOC before and after the adjustment, and the fuel cell system state during the adjustment process isare recorded.
- b) If necessary, for the measurement of hydrogen consumption during cold start, the additional external tank is connected to the vehicle in accordance with the methods described in ISO 23828:2022. The originally installed tank is shut off during the test.
- c) Test chamber is set to reach the target temperature directly, or according to the temperature drop curve instructed by the vehicle manufacturer.

- d) During the time when ambient temperature drops to the set temperature, a start and shutdown operation is possible in accordance with the vehicle manufacturer's specifications.
- e) The time measurement is started after the test temperature reaches the set temperature. Note that the effective soaking time is not less than 12 h.

7.38.3 Cold start performance test under sub-zero temperature

The cold start performance test under sub-zero temperature is performed by the following steps. Data sampling is started as soon as the vehicle is started. Parameters (see Figure B.1Figure B.1), such as voltage of fuel cell stack₄ U_{FC} , current of fuel cell stack₄ I_{FC} , voltage of RESS₄ U_{RESS_4} and current of RESS₄ I_{RESS_4} are collected. This is possible using a measurement method specified by the vehicle manufacturer by using data from the ECU. Data sampling ends after the vehicle is completely shut down.

- a) The vehicle is soaked in accordance with the information presented in 8.27.2.
- b) After soaking, an external source of hydrogen is turned on (if necessary), then the vehicle is started in accordance with the starting procedure specified by the vehicle manufacturer.
- c) After the action of starting the vehicle, the heating device, air conditioning, etc. can be switched on in accordance with the requirements specified by the vehicle manufacturer to consume the power.
- d) Time t_1 from starting the vehicle to the vehicle powertrain being ready (e.g. "READY" or "OK" is displayed on the vehicle dashboard) is recorded.
- e) Time t_2 from starting the vehicle to the output power of the fuel cell stack is not less than $\frac{1kW_1 kW}{1}$ (namely, cold start time under sub-zero temperature) is recorded. After the output power of fuel cell stack reaching 1 kW, the fuel cell stack can continuously operate for 10 min at not less than 1 kW or cumulatively operate for 10 min at not less than 1 kW within 20 min after reaching 1 kW. If necessary, total hydrogen consumption C_{H2} from starting the vehicle to t_2 is recorded.
- f) The vehicle is shut down in accordance with the vehicle manufacturer's procedure and terminate the sa 78-911192108cd6/1so-test.
- g) After completing all the above steps, it is considered that the vehicle starts successfully at the set temperature. If the vehicle shuts down during the starting process, then the start fails and the test is restarted in accordance with the step a) to f).

7.48.4 Launch performance test under sub-zero temperature

7.4.18.4.1 Determining the dynamometer load coefficient

8.4.1.1 Vehicle road load and its reproduction on chassis dynamometer could be determined according to ISO 10521 series. The regenerative braking systems, which works even when the brake pedal is not depressed, is disable during the deceleration portion of coast-down testing on both the test track and dynamometer.

8.4.1.2 The dynamometer load coefficient is adjusted to simulate the operation conditions of the vehicle on real road in sub-zero temperature environment. The adjustment is based on the identified changing characteristics of road load under sub-zero temperature, it can also reduce the sliding time of the road load measured in accordance with <u>8.4.1.17.3.1.1</u> by a percentage specified by the vehicle manufacturer to obtain the load as the alternative road load.

7.4.28.4.2 Setting of vehicle's driving mode

If the vehicle's driving mode recommended by the vehicle manufacturer can match the ADT curve, then the mode recommended by the vehicle manufacturer is adopted. If the vehicle's driving mode

© ISO 2023 - All rights reserved

4

recommended by the vehicle manufacturer fails to match to the ADT curve, then the mode with a maximum speed is selected.

7.4.3<u>8.4.3</u> Test method

The launch performance test under sub-zero temperature is performed according to the following steps. Data sampling is started as soon as the vehicle is started. Parameters, such as voltage of fuel cell stack U_{FC} , current of fuel cell stack I_{FC} , voltage of RESS U_{RESS} , and current of RESS I_{RESS} are collected. Data sampling ends after the vehicle is completely shut down.

- a) The vehicle is soaked in accordance with the information presented in 8.2 requirement of 7.2.,
- b) After soaking<u>, an</u> external source of hydrogen is turned on (if necessary), then the vehicle is started in accordance with the starting procedure specified by the vehicle manufacturer.
- c) Time t_1 from starting the vehicle to the vehicle powertrain being ready (e.g. "READY" or "OK" is displayed on the vehicle dashboard) is recorded.
- d) After the vehicle powertrain is ready, the driving mode is switched to the driveable mode and the vehicle is operated at fully depressed accelerator pedal until the output power of the fuel cell stack is not less than 50 % of the rated power of the fuel cell system (P_{FCS}), and time t_3 is recorded. If necessary, total hydrogen consumption C_{H2} from starting the vehicle to t_3 is recorded.
- e) The driveable mode is kept, the accelerator pedal is released, the brake pedal is pressed down slowly, and the vehicle is stopped within 1 min.
- f) Within 3 min after the stop, the drive test is carried out in accordance with the information of the relevant regional ADT. One drive cycle is performed in the test.
- g) The vehicle is shut down in accordance with the procedure specified by the vehicle manufacturer and terminate the test.
- h) After completing all the above steps, it is considered that the vehicle launches successfully at the set temperature. If the condition of termination criteria in <u>8.4.57.3.5</u> is reached during the test process, then the test fails. In that case, the test is restarted in accordance with the steps a) to g).

7.4.4<u>8.4.4</u> Tolerance of drive cycle test

Tolerances of speed and time on the ADT cycle are based on the requirements of the relevant regional ADT procedure.

7.4.58.4.5 Test termination criteria

The test is terminated if one of the following conditions is met:

- a) when an indicator to stop the vehicle is presented by the vehicle dashboard;
- b) when the vehicle fails to conform to the tolerance requirements specifiedspecifications provided in 8.4.47.3.4 during the launch test under sub-zero temperature;
- c) if the maximum vehicle speed declared by the vehicle manufacturer is less than the maximum speed of the ADT cycle, and the vehicle cannot reach the declared maximum vehicle speed.

7.58.5 Requirements of data acquisition

The data sampling frequency is not less than 10 Hz.

© ISO 2023 – All rights reserved

5

78-911f92108ed6/iso

Alternatively, when the voltage and current of the fuel cell stack cannot be measured directly due to the vehicle structure, the voltage and current data of ECU can be used, or the output voltage and current of the DC/DC converter after the fuel cell stack can be measured.

89 Test data processing

According to the vehicle manufacturer's requirements, if necessary, the total output energy of the fuel cell stack and RESS in the cold start test under sub-zero temperature in 8.37.2 is calculated in accordance with <u>Annex BAnnex B.</u>

According to the vehicle manufacturer's requirements, if necessary, the total output energy of the fuel cell stack and RESS in the launch test under sub-zero temperature in <u>8.47.3</u> is calculated in accordance with <u>Annex BAnnex B.</u>

910 Test records

The test results are recorded in accordance with <u>Annex C (Tables C.1 (Tables C.1</u> and <u>C.2</u>C.2).).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/DTR 17326</u>

https://standards.iteh.ai/catalog/standards/sist/2208633b-ff2d-4290-8a78-911f92108ed6/isodtr-17326