

INTERNATIONAL STANDARD

ISO
3269

Second edition
1988-12-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Fasteners — Acceptance inspection

Éléments de fixation — Contrôle de réception

ITEH Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 3269:1988](#)

<https://standards.iteh.ai/catalog/standards/iso/8cc29d59-b961-4c51-a149-cd9460031ffb/iso-3269-1988>

Reference number
ISO 3269 : 1988 (

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 3269 was prepared by Technical Committee ISO/TC 2, *Fasteners*.

Document Preview

This second edition cancels and replaces the first edition (ISO 3269 : 1984), of which it constitutes a technical revision. In particular,

[ISO 3269:1988](#)

- a) The terms "defect" and "defective" have been replaced by "nonconformity" and "nonconforming unit";
- b) AQL-values for dimensional and mechanical characteristics for plain washers and pins have been specified.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

Fasteners — Acceptance inspection

1 Scope and field of application

1.1 This International Standard specifies the procedure to be followed by the purchaser at his acceptance inspection in order to decide whether a lot of fasteners may be accepted or rejected, when no other acceptance procedure has been agreed with the supplier at the time of ordering the fasteners. Additional specific acceptability requirements may be included within a specific product standard (for example, prevailing torque type nuts). The procedure is also to be applied when conformance to specification is disputed.

1.2 It applies to bolts, screws, studs, nuts, pins, washers and other related fasteners not intended for high-volume machine assembly, for special purpose applications or for specially engineered applications requiring greater in-process controls and lot traceability. Procedures for these products shall be agreed between supplier and user prior to confirmation of the order.

1.3 It applies to fully manufactured products only and neither implies nor includes any particular in-process control procedure or inspection during production.

1.4 Accessories, services and partially fabricated parts (for example, washers, nuts, plating, heat treatment, blanks, etc.) may be purchased by the supplier from other suppliers for use in production of fasteners. However, the supplier of the fully manufactured product shall be solely responsible for the quality of the final product.

Any plating or other process carried out by the user after receipt of the fasteners shall invalidate the requirements of this International Standard.

1.5 The annex gives notes for guidance and the rationale behind this International Standard.

2 References

ISO 898-1, *Mechanical properties of fasteners — Part 1: Bolts, screws and studs.*

ISO 898-2, *Mechanical properties of fasteners — Part 2: Nuts with specified proof load values.*

ISO 898-6, *Mechanical properties of fasteners — Part 6: Nuts with specified proof load values — Fine pitch thread.*

ISO 2859, *Sampling procedures and tables for inspection by attributes.*

ISO 3506, *Corrosion-resistant stainless steel fasteners — Specifications.*

ISO 3534, *Statistics, vocabulary and symbols.*

ISO 4759-1, *Tolerances for fasteners — Part 1: Bolts, screws and nuts with thread diameters $> 1,6$ and < 150 mm and product grades A, B and C.*

ISO 4759-3, *Tolerances for fasteners — Part 3: Washers for metric bolts, screws and nuts with thread diameters from 1 up to and including 150 mm — Product grades A and C.*

ISO 6157-1, *Fasteners — Surface discontinuities — Part 1: Bolts, screws and studs for general requirements.*

ISO 6157-2, *Fasteners — Surface discontinuities — Part 2: Nuts with thread sizes M5 to M39.1*

ISO 6157-3, *Fasteners — Surface discontinuities — Part 3: Bolts, screws and studs for special requirements.*

3 General requirements

3.1 Although every fastener should meet all requirements of its standard specification, in mass production this is not always possible. Depending on the intended function and utilization, it is neither necessary nor economic always to separate fasteners which meet all requirements from those which do not.

3.2 For production quality control, the manufacturer may use any inspection procedure, but due care shall be taken during all production stages that the fasteners will satisfy the respective standards.

The designation of an AQL shall not imply that the supplier has the right to supply knowingly any defective unit of product.

1) In preparation.

3.3 The user may test the fasteners delivered for function and utilization, as he judges necessary or economically justifiable, provided that the supplier's risk is not more than 5 % for dimensional and 12 % for mechanical requirements (see table 2), unless prior agreement has been reached.

3.4 It is important that, during acceptance inspection, stress is laid on the fitness of the product to perform its intended function. Objections shall only be raised if the nonconformities impair the intended function and/or utilization of the fasteners. The user shall give the supplier the opportunity of verifying nonconformities discovered.

If at the time of inspection the subsequent function is uncertain (for example, stock parts), any deviation from the specified tolerances shall be regarded as impairing the function and/or utilization.

3.5 A rejected lot of fasteners may not be presented for re-inspection unless the nonconformity has been rectified or the lot sorted (see 5.5).

NOTE — If such rectification could impair the intended function and utilization, it requires the consent of the user.

3.6 Gauges and measuring instruments used for inspection may not determine any fastener to be unacceptable if in fact the fastener dimensions and properties are within specification limits.

If disputes arise, direct measurements should be made for decision.

3.7 Also when the lot satisfies the acceptance conditions of this International Standard, it is possible to reject single fasteners which do not meet the agreed technical requirements.

4 Definitions

The following definitions apply for the purposes of this International Standard; they are based on ISO 3534.

4.1 acceptance inspection: All the procedures such as sampling, gauging, measuring, comparing and testing necessary to decide whether a lot of fasteners should be accepted.

4.2 supplier: Manufacturer of the fasteners, or a dealer or representative who supplies the fasteners.

4.3 purchaser: Receiver or his representative who receives the fasteners; this is not necessarily the final user of the fasteners.

4.4 inspection lot: Definite quantity of fasteners of a single type, tolerance grade, property class and size, manufactured under conditions which are presumed uniform and submitted by a supplier for inspection at one time.

4.5 lot size (N): Number of fasteners contained in a lot.

4.6 sample: One or more fasteners drawn from a lot, taken at random so that all fasteners have an equal chance of selection.

4.7 sample size (n): Number of fasteners in the sample.

4.8 characteristic: Dimensional element, mechanical property or other recognisable feature of a product for which limits are specified, for example, head height, body diameter, tensile strength or hardness.

4.9 major characteristic: Characteristic which, if nonconforming, is likely to result in a failure or to reduce materially the usability of the fastener for its intended purpose.

4.10 minor characteristic: Characteristic that is neither likely to reduce materially the usability of the fastener for its intended purpose, nor a departure from established specifications having little bearing on the effective use or operation of the fastener.

4.11 nonconformity: Departure of a quality characteristic that results in a product not meeting a specified requirement.

4.12 nonconforming unit: Fastener with one or more nonconformities.

4.13 acceptance number (Ac): Maximum number of nonconforming units in any given sample that still allows acceptance of the lot.

4.14 sampling plan: Plan according to which a sample is taken in order to obtain information and to reach a decision on the acceptance of the lot.

4.15 acceptable quality level (AQL): Quality level which in a sampling plan corresponds to a specified relatively high probability of acceptance.

4.16 limiting quality (LQ): Quality level which in a sampling plan corresponds to a specified and relatively low probability of acceptance.

LQ_{10} is the percentage of nonconforming units in the characteristic of the submitted product which has a one-in-ten chance of being accepted by the sampling plan; it is often known as the consumer's risk.

4.17 supplier's risk: Degree of probability that a lot does not satisfy the agreed technical requirements, the quality level of which does correspond to the respective AQL-value, when a sampling plan is used.

4.18 probability of acceptance (P_a): Probability that a lot which contains a certain number of nonconforming units cannot be rejected as a whole on the basis of a sampling plan.

5 Acceptance inspection procedure for dimensional and mechanical property characteristics of fasteners

5.1 Find the description of the fastener to be inspected for dimensional characteristics in tables 1a) to 1c), note the appropriate characteristic to be inspected and the associated AQL value. For mechanical property characteristics, note the characteristic to be inspected and the associated AQL value from tables 3a) to 3c).

5.2 Choose the appropriate ratio LQ_{10}/AQL in accordance with 3.3 (for examples, see table 2).

NOTES

1 Multiplying this ratio by the AQL value gives the LQ_{10} . The LQ_{10} shall correspond to the function and/or utilization of the fastener. For more important functions and/or utilizations of the fasteners, the LQ_{10} value may be smaller, but this requires greater sample sizes and higher inspection costs. It may be possible to reduce the proportion of fasteners inspected from known sources with continuous production controls by choosing a greater ratio LQ_{10}/AQL , if the lots inspected so far have shown good quality. Conversely, it may be necessary to increase the proportion inspected if the lot cannot be presumed to be uniform or is not from one manufacturer. The ratio LQ_{10}/AQL used shall be within the sole judgement of the purchaser.

2 The sampling plans in table 2 are determined by the choice of AQL and of customer's risk (LQ_{10}). Once these two parameters have been chosen, the sample size, acceptance number, and supplier's risk follow automatically. The lot size/sample size relationship in table 1 of ISO 2859, which is intended to apply only in the case of production of a continuous series of lots, is not appropriate. Table 2 can however be applied to such a case, but is also applicable to isolated lots by suitable choice of LQ_{10} . In case of dispute between purchaser and supplier, a sampling plan shall be chosen according to which the supplier's risk is not higher than that laid down in 3.3.

<https://standards.iteh.ai/catalog/standards/iso/8cc29d59-b>

5.3 Knowing the AQL and the chosen ratio LQ_{10}/AQL , find the sample size and the acceptance number, for example from table 2.

5.4 Select the sample in accordance with 4.6. For each characteristic, carry out the inspection, note the number of nonconforming units and accept the lot if the number of nonconforming units is equal to or lower than the acceptance number.

5.5 In the event of rejection, suitable disposal of the lot shall be agreed upon by purchaser and supplier (see 3.5).

5.6 The samples for the tensile test [see tables 3a) to 3c)] should where possible be those used for the hardness test, with the lowest and/or highest hardness figures. (The tensile test, being destructive, requires fewer samples than the non-destructive hardness test.)

The proof load test is regarded as a destructive test.

Examples:

1 Inspection of threads for hexagon bolts, grade A of a supplier well known for his steady quality; therefore ratio LQ_{10}/AQL of 6,2 is applicable:

AQL 1 — Sample size 80 — Acceptance number Ac 2.

2 Inspection of the driving media for hexagon socket head screws of an unknown supplier; therefore the ratio LQ_{10}/AQL has to be lowered to 3,1:

AQL 1 — Sample size 500 — Acceptance number Ac 10.

3 Inspection of the mechanical property: stress under proof load for nuts:

AQL 1,5 — Sample size 8 — Acceptance number Ac 0.

5.7 Non-destructive (visual) tests for detecting surface discontinuities cannot always give results of the type and dimension of the discontinuity: this can be verified by destructive tests only. Therefore greater sample sizes are necessary for the non-destructive test for surface discontinuities to identify those fasteners which consequently shall be subject to destructive testing.

<https://standards.iteh.ai/catalog/standards/iso/8cc29d59-b>

If during visual inspection, any fastener is found with quench cracks in any location, or folds at or below the bearing surface, except "clover leaf" folds in non-circular fasteners, the lot shall be rejected.

If on the destructive test any fastener is found with seams, bursts, shear bursts, forging cracks, surface discontinuities on the thread, tool marks, voids or damages, which exceed the allowable limits specified for the applicable type of discontinuity, the lot shall be rejected.

Table 1a) — Dimensional characteristics for threaded fasteners

Applicable dimensional characteristics ¹⁾		Product group					
		Socket screws, bolts and screws of grades A and B ²⁾ , studs	Bolts and screws of grade C ²⁾	Nuts > class 8 ³⁾	Nuts < class 8 ³⁾	Machine screws	Self-tapping screws, thread-forming screws
AQL ⁴⁾							
Major characteristics	width across flats	1	1,5	1	1,5	1,5	1,5
	width across corners	1	1,5	1	1,5		1,5
	width of slot or socket	1				1,5	1,5
	depth of slot or socket	1				1,5	1,5
	recess penetration depth					1,5	1,5
	radius under head	1,5					
	go thread gauge	1	1,5	1,5	1,5	1,5	
	no go thread gauge	1	1,5	2,5	2,5	1,5	
Minor characteristics	major diameter						2,5
	all others	2,5	4	2,5	4	4	4

1) Characteristics shall be individually assessed.

2) The product grades refer to the classification of the product with regard to fit and tolerances. (See ISO 4759-1.)

<https://standards.iteh.ai/standards/iso-3269-1988>

3) Product property class for nuts: see ISO 898-2.

4) For features left in the hot-forged condition use an AQL of 2,5. Hot-forged products shall be presented for inspection separately.

Table 1b) — Dimensional characteristics for plain washers

Applicable dimensional characteristics ¹⁾		Product classification ²⁾	
		Grade A	Grade C
AQL			
Major characteristics	Hole diameter	1	1,5
	Outside diameter	1,5	2,5
Minor characteristics	All others	2,5	4

1) Characteristics shall be individually assessed.

2) The product grades refer to the classification of the product with regard to fit and tolerances. (See ISO 4759-3.)