	International Standard
	ISO 21922
Refrigerating systems and heat pumps — Valves — Requirements testing and marking	First edition 2021-08
AMENDMENT 1 iTeh Sta	AMENDMENT 1 ndard 2024-11
Systèmes de réfrigération et pompes à chaleur — Robinetter Exigences, essais et marquage AMENDEMENT 1 <u>ISO 21922:2021</u> Itps://standards.iteh.ai/catalog/standards/iso/539987e6-5f2:	ie ds. iteh.ai) Preview / <u>Amd 1:20 24</u> 5-4a0c-835 c-1a90ac95c609/iso-21922-2021-amd-1-2024
Reference number ISO 21922:2021/Amd.1:2024(en)	© ISO 2024

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 21922:2021/Amd 1:2024

https://standards.iteh.ai/catalog/standards/iso/539987e6-5f25-4a0c-835c-1a90ae95c609/iso-21922-2021-amd-1-2024

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

ISO 21922:2021/Amd.1:2024(en)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 86, *Refrigeration and air-conditioning*, Subcommittee SC 1, *Safety and environmental requirements for refrigerating systems*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 182, *Refrigerating systems*, *safety and environmental requirements*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 21922:2021/Amd 1:2024</u> https://standards.iteh.ai/catalog/standards/iso/539987e6-5f25-4a0c-835c-1a90ae95c609/iso-21922-2021-amd-1-2024

Refrigerating systems and heat pumps — Valves — Requirements, testing and marking

AMENDMENT 1

Table 1

Replace the $K_{\rm VS}$, *L* and $Q_{\rm M}$ rows with the following rows:

K _{VS}	Flow coefficient of the valve	m ³ /h
L	Leakage percentage	%
Q _m	Valve leakage mass flow rate measured with air	kg/h

Replace the Q_V row with the following two rows:

Q_{V1}	Valve leakage volume flow rate measured upstream with air	m ³ /h
Q_{V2}	Valve leakage volume flow rate measured downstream with air	m ³ /h

7.6

Document Previe

Replace the entire subclause 7.6 with the following:

7.6 Seat tightness

://standards.iteh.ai/catalog/standards/iso/539987e6-5f25-4a0c-835c-1a90ae95c609/iso-21922-2021-amd-1-2024 **7.6.1 General**

Subclause 7.6 applies to components where internal seat tightness is a design feature. The seat tightness shall be classified according to Table 3.

The maximum leakage percentage, *L*, is calculated as described in 7.6.2. The maximum values of *L* for a given seat tightness class are listed in Table 3.

ISO 21922:2021/Amd.1:2024(en)

Seat tightness class	Maximum leakage percentage, L ^a	Maximum leakage volume flow rate, Q _{V2} , measured downstream ^a
А	_	Zero bubbles or equivalent measured during one minute $^{\rm b}$
В	—	Zero bubbles or equivalent measured during one minute
С	0,002 %	_ c
D	0,01 %	_ c
Е	0,025 %	_ c
F	0,05 %	_ c
G	0,1 %	_ c
Н	_	d

Table 3 — Type test requirements for seat tightness

^a For type test the manufacturer shall measure the leakage at ambient temperature covering the whole differential pressure range. For manual valves, see Table 4 for suggested upper limits to the maximum differential pressure.

^b For safety valves the manufacturer shall measure the leakage up to 0,9 × set pressure of the valve.

^c The maximum downstream leakage volume flow rate corresponding to the maximum leakage percentage can be calculated using Formula (3) in 7.6.2.

^d For seat tightness class H, testing shall be conducted to verify the seat tightness specified in the technical documentation.

The required seat tightness class depends on the intended application of the valve:

a) Valves leading to the atmosphere permanently shall be seat tightness class A.

b) Valves leading to the atmosphere during service shall be seat tightness class A or B.

c) For other valves, seat tightness classes with lower requirements are allowed.

NOTE 1 Components with several valve seats, can have several seat tightness classes.

NOTE 2 Safety valves are examples of valves where seat tightness class A is required, while most stop valves will require seat tightness classes A or B.

For manually closed valves, when testing the seat tightness, the seat shall be closed before the test applying the prescribed closing force.

For valves of the double seating type such as many gate, plug, and ball valves, the test pressure shall be applied successively to each end of the closed valve and tightness to the opposite end checked.

As alternate methods for valves with independent double seating (such as double disc or split wedge gate valves), at the option of the manufacturer, the pressure may be applied inside the bonnet (or body) of the closed valve and each seat checked for tightness at the valve ports, or the pressure may be applied to the valve ports and the sum of seat leakage measured at the bonnet (or body). These alternate methods may be used at the option of the manufacturer for valves with single discs (such as solid or flexible wedge gate valves) provided a supplementary closure member test across the disc is performed.

For other valve types, the test pressure shall be applied across the closure member in the direction producing the most adverse seating condition. For example, a globe valve shall be tested with pressure under the disc. A check valve, or other valve type designed, sold, and marked as a one-way valve, requires a closure test only in the appropriate direction. A stop check valve requires both tests.

7.6.2 Seat tightness: type test

The leakage percentage *L* is specified for the flow directions for which the valve is designed to shut off the flow.

The manufacturer shall measure the leakage covering the whole differential pressure range for which the valve is designed using gas (for instance air or nitrogen). The leakage percentage L shall not exceed the limits given in Table 3 for type test.

For seat tightness class H the leakage percentage, *L*, shall be specified in the technical documentation.